Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сечений стержней




Геометрические характеристики поперечных

Прочность, жёсткость и устойчивость деталей машин и элементов инженерных сооружений зависит в основном от внешних нагрузок, вида материала и размеров деталей и элементов, называемых в сопротивлении материалов стержнями. Условие прочности стержня можно записать в следующем виде:

,

где – функция прочности; – обобщённый параметр внешних нагрузок; – обобщённый параметр формы и размеров стержня; – обобщённый параметр упругих и механических характеристик материала.

Параметр при расчётах распадается на два независимых подпараметра

,

где – параметр длины стержня; – параметр формы и размеров поперечного сечения стержня.

Влияние формы и размеров поперечного сечения на прочность, жёсткость и устойчивость обладает большой нелинейностью и выражается в виде особых геометрических характеристик. На рис. 1.1 показано поперечное сечение стержня, отнесенное первоначально к вспомогательной произвольно выбранной системе координат XOY.

Вводятся следующие понятия, связанные с геометрией сечения:

; – статические моменты площади;

; – осевые моменты инерции;

– центробежный момент инерции;

– полярный момент инерции,

где А и dA – площадь и дифференциал площади поперечного сечения;

x, y, ρ – координаты дифференциала площади.

В сопротивлении материалов все расчётные формулы получены с использованием главных центральных осей инерции U и V, положение которых определяется следующим образом. Вычисляются координаты центра тяжести сечения во вспомогательной системе координат XOY (рис. 1.1):

  .  

Рис. 1.1. Поперечное сечение стержня

Находятся моменты инерции относительно центральных осей XC, YC, параллельных исходным осям X, Y (рис. 1.1):

; ; .

Определяется значение угла между центральной осью XС и главной осью U (осью YС и осью V), (рис. 1.1),

.   (1.1)

Вычисляются значения главных осевых и центробежного моментов инерции сечения

;

; (1.2)

.

Для простых фигур (прямоугольника, треугольника, круга и т.д.) и широко используемых в практике составных фигур (двутавров, швеллеров, уголков и т.д.) все геометрические характеристики вычислены и представлены в справочниках в виде формул или таблиц сортамента (приложение). Проектируемые детали машин и элементы инженерных сооружений имеют разнообразные профили, которые можно разбить на составляющие с известными геометрическими характеристиками относительно их собственных центральных осей. В этом случае используются формулы для координат центра тяжести и моментов инерции составных фигур

(1.3)

; ; , (1.4)

где , – координаты центра тяжести i -й простой фигуры в любой вспомогательной системе координат; Ai – площадь i -й простой фигуры; JXCi, JYCi, JXYCi – моменты инерции i -й простой фигуры относительно собственных центральных осей, параллельных осям вспомогательной системы; ; – координаты центра тяжести i -й простой фигуры относительно центральных осей XC, YC всего поперечного сечения. Отметим, что в качестве “простой” фигуры может рассматриваться любая фигура, если у неё известно положение центра тяжести, площадь и значения моментов инерции.

Рассмотрим кратко основные свойства геометрических характеристик.

Единицы измерений: [ x, y, xC, yC, a, b ] = 1 м (1 см; 1 мм);

[ A ]=1 м2 (1 см2; 1 мм2); [ SX, SY ] = 1 м3 (1 см3; 1 мм3);

[ JX, JY, JXY, JP ] = 1 м4 (1 см4; 1 мм4).

Знаки: площадь А, осевые JX, JY и полярный JP моменты инерции могут быть только положительными. Координаты х, у, хC, уC, а, b, статические моменты площади SX, SY и центробежный момент инерции JXY могут быть положительными, отрицательными и равными нулю.

Статические моменты площади SXC, SYC относительно осей, проходящих через центр тяжести сечения, всегда равны нулю – основное свойство центральных осей.

Центробежный момент инерции JUV относительно главных осей всегда равен нулю – основное свойства главных осей.

Относительно главных осей моменты инерции JU, JV экстремальны, т.е. один из них принимает максимальное значение, а другой минимальное – определение понятия “главные оси инерции”.

При повороте осей координат на любой угол сумма осевых моментов инерции не изменяется, т.е. JX + JY = const – условие стационарности (инвариантности).




Поделиться с друзьями:


Дата добавления: 2015-06-30; Просмотров: 684; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.