Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция №6. Пути загрязнения химическими элементами. Ртуть, свинец, цинк, кадмий – важные элементы. Мышьяк, алюминии, медь, железо, стронции




Муравьиная кислота (пищевая добавка Е236) - бесцветная жидкость, растворимая в бензоле, глицерине, ацетоне, толуоле. Муравьиная кислота является первым представителем в ряду карбоновых кислот. В пищевой промышленности муравьиная кислота используется в качестве добавки-консерванта с международным кодом Е236. Химическая формула муравьиной кислоты: CH2O2 или HCOOH.

Свойства некоторых пищевых добавок

Рибофлавины (пищевая добавка Е101) - один из важнейших витаминов, являющийся коферментом многих биологических процессов. Добавка Е101 больше известна как витамин B2. Химическая формула рибофлавина: C17H20N4O6.

Понсо, он же пунцовый 4R (пищевая добавка Е124) - краситель синтетического происхождения, имеющий пунцовый цвет. Краситель Е124 открывает целую палитру оттенков: при добавлении желтых (Е102, Е104) или оранжевых (Е110) красителей получается коричневый цвет, а при смешивании с синим красителем Понсо 4R дает фиолетовую окраску. По своему химическому составу краситель Е124 представляет натриевую соль: гранулят или порошок красного цвета отлично растворимый в воде. Химическая формула красителя Е124: C20H11N2Na3O10S3.

Синий блестящий FCF (пищевая добавка Е133) - триарилметановый краситель, получаемый из каменноугольной смолы методом органического синтеза. Молекулярная формула красителя Е133: C37H34N2Na2O9S3.

Хлорофилл (пищевая добавка Е140) - натуральный краситель, обладающий зеленым цветом. Краситель Е140 с легкостью растворяется в маслах и жирах, очень чувствителен к воздействию высоких температур и света. При их воздействии краситель Е140 распадается и теряет окраску. Хлорофилл имеет производную - хлорофиллина медный комплекс (добавка Е141), который растворяется в воде и водно-спиртовых растворах, при этом устойчив к кислой среде и не теряет насыщенного изумрудного цвета при долгом хранении. По химическому строению, хлорофилл представляет собой магниевые комплексы тетрапирролов. Молекулярная формула добавки Е140: C55H72O5N4Mg.

Пиросульфит натрия (пищевая добавка Е223) - это неорганическое соединение, представляющее собой белый кристаллический порошок. Химическая формула вещества пиросульфита натрия: Na2S2O5. В пищевой промышленности добавка Е223 используется в качестве консерванта или антиоксиданта.

Ортофосфат натрия - E339 - пищевая добавка, используется в качестве регулятора кислотности, эмульгатора, стабилизатора, влагоудерживающего агента, фиксирует окраску, усиливает действие антиоксидантов. Химическая формула: Na3PO4.

Глицерин (пищевая добавка E422) является простейшим представителем трехатомных спиртов. Представляет собой вязкую жидкость, не имеющую цвета и неограниченно растворимую в воде. На вкус эта добавка сладкая, отчего и произошло ее название (гликос означает сладкий). Химическая формула глицерина: C3H5 (OH) 3. Впервые это вещество получил шведский химик Карл Шееле в 1779 году, когда проводил процесс омыления жиров. В промышленности глицерин производится путем гидролиза природных (животных и растительных) жиров и масел. Добавка E422 широко используется в производстве кондитерских изделий, а также некоторых алкогольных напитков. В ней хорошо растворяются другие вещества. Часто встречается в шоколадных изделиях, тортах, пирожных.

Пищевая добавка E420, именуемая в химической отрасли сорбитом или глюцитол представляет собой шестиатомарный спирт со сладковатым вкусом. Формула вещества: C6H14O6. Вещество относится к классу пищевых подсластителей. Добывается в основном из глюкозы путем гидрирования.

 

Тип добавок Значение Воздействие на организм
Е 1** - красители 1. Для восстановления природного цвета, утраченного в процессе обработки и хранения. 2. Для окрашивания бесцветных продуктов. 3. Для повышения интенсивности цвета. 4. Применяется при подделке продуктов Среди синтетических красителей практически нет безопасных. Большинство из них оказывают аллергенное, мутагенное, канцерогенное действие (Е131 - 142, 153). Запрещённые Е102, 110, 120, 123, 124, 127, 155
Е 2** - консерванты 1. Для увеличения срока годности, предотвращения порчи продуктов, происходящей под действием микроорганизмов Сорбиновая кислота угнетает ферментные системы организма. Бензойная кислота - аллерген. Антибиотики вызывают нарушения необходимого соотношения микрофлоры в кишечнике, провоцируют кишечные болезни Ракообразующие: Е210, 211-217, 219. Вредные для кожи: Е230-232, 238. Вызывают расстройство кишечника: Е221, 226. Влияют на давление: Е250, 251. Опасные: Е201, 222-224, 233, 270
Е 3** - антиокислители 1. Защищают жиросодержащие продукты от прогоркания. 2. Останавливают самоокисление продуктов Вызывают сыпь: Е311-313. Вызывают расстройство кишечника Е338-341. Повышают холестерин Е320-322
Е 4** - загустители 1. Позволяют получить продукты с нужной консистенцией, улучшают и сохраняют их структуру. 2. Используется в производстве мороженого, желе, консервов и майонеза Вызывают сыпь: Е311-313. Вызывают расстройство кишечника Е338-341. Повышают холестерин Е320-322 Впитывают вещества независимо от их полезности или вредности, могут нарушить всасывание минеральных веществ, являются легкими слабительными. Вызывают расстройство кишечника: Е-407, 450, 462, 465, 466
Е 5** - эмульгаторы 1. Отвечают за консистенцию пищевого продукта, его вязкость. 2. Используется в производстве маргарина, кулинарного жира, колбасного фарша, кондитерских и хлебобулочных изделиях Использование фосфатов может привести к нарушению баланса между фосфором и кальцием, плохому усвоению кальция, развитию остеопороза. Опасные: Е 501-503, 510, 513, 527, 560
Е 6**? усилители вкуса 1. Для усиления выраженного вкуса и аромата. 2. Придают ощущение жирности низкокалорийным йогуртам и мороженому 3. Смягчают резкий вкус уксусной кислоты и остроту в майонезе. 4. Подсластители Глютамат натрия вызывает головную боль, тошноту, учащённое сердцебиение, сонливость, слабость, может повлиять на зрение, если употреблять его в течение многих лет Сахарин способен вызывать опухоль мочевого пузыря. Глутаминовая кислота превращается в амино-масляную, которая является возбудителем ЦНС. Канцерогенные: Е626-630, 635. Опасные: Е620, 636, 637

Запрещённые добавки -это добавки, достоверно приносящие вред организму.

E121 - Цитрусовый красный 2 (краситель)

E123 - Красный амарант (краситель)

E128 - 03.09.2007. Красный 2G (краситель)

E216 - Пара-гидроксибензойной кислоты пропиловый эфир, группа парабенов (консервант)

E217 - Пара-гидроксибензойной кислоты пропилового эфира натриевая соль (консервант)

E240 - Формальдегид (консервант)

пищевая добавка вкус хранение

Неразрешённые добавки -это добавки, которые не тестировались или проходят тестирование, но окончательного результата пока нет.

E127 - Эритрозин - запрещен в ряде стран

E154 - Коричневый FK

E173 - Алюминий

E180 - Рубиновый литол ВК

E388 - Тиопропионовая кислота

E389 - Дилаурилтиодипропионат

E424 - Курдлан

E512 - Хлорид олова (II)

E537 - Гексацианоманганат железа

E557 - Силикат цинка

E912 - Эфиры монтаниновой кислоты

E914 - Окисленный полиэтиленовый воск

E916 - Кальция йодат

E917 - Калия йодат

E918 - Оксиды азота

E919 - Нитрозил хлорид

E922 - Персульфат калия

E923 - Персульфат аммония

E924b - Бромат кальция

E925 - Хлор

E926 - Диоксид хлора

E929 - Перекись ацетона

Разрешены в России, но запрещены в Евросоюзе:

E142 - синтетический пищевой краситель Зелёный S

E425 - конжак, конжаковая мука, конжаковая камедь и конжаковый глюкоманнан.

Токсичные элементы (в частности, некоторые тяжелые металлы) составляют обширную и весьма опасную в токсикологическом отношении группу веществ. К ним относятся: ртуть, свинец, кадмий, цинк, мышьяк, алюминий, медь, железо, стронций и др.

Разумеется, не все перечисленные элементы являются ядовитыми, некоторые из них необходимы для нормальной жизнедеятельности человека и животных. Поэтому часто трудно провести четкую границу между биологически необходимыми и вредными для здоровья человека веществами.

В большинстве случаев реализация того или иного эффекта зависит от концентрации. При повышении оптимальной физиологической концентрации элемента в организме может наступить интоксикация, а дефицит многих элементов в пище и воде может привести к достаточно тяжелым и трудно распознаваемым явлениям недостаточности.

Загрязнение водоемов, атмосферы, почвы, сельскохозяйственных растений и пищевых продуктов токсичными металлами происходит за счет:

- выбросов промышленных предприятий (особенно угольной, металлургической и химической промышленности);

- выбросов городского транспорта (имеется в виду загрязнение свинцом от сгорания этилированного бензина);

- применения в консервном производстве некачественных внутренних покрытий, технологии припоев;

- контакта с оборудованием (для пищевых целей допускается весьма ограниченное число сталей и других сплавов).

Для большинства продуктов установлены предельно – допустимые концентрации (ПДК) токсичных элементов, к детским и диетическим продуктам предъявляются более жесткие требования.

Наибольшую опасность из вышеназванных элементов представляют ртуть, свинец, кадмий.

Ртуть – один из самых опасных и высокотоксичных элементов, обладающих способностью накапливаться в растениях и в организме животных и человека, т. е. является ядом кумулятивного действия.

Токсичность ртути зависит от вида ее соединений, которые по-разному всасываются, метаболизируются и выводятся из организма.

Наиболее токсичны алкилртутные соединения с короткой цепью – метилртуть, этилртуть, диметилртуть. Механизм токсичного действия ртути связан с ее взаимодействием с сульфгидрильными группами белков. Блокируя их, ртуть изменяет свойства или инактивирует ряд жизненно важных ферментов. Неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция меди, цинка, селена; органические – обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена. Защитным эффектом при воздействии ртути на организм человека обладают цинк и, особенно, селен. Предполагают, что защитное действие селена обусловлено деметилированием ртути и образованием нетоксичного соединения – селено – ртутного комплекса. О высокой токсичности ртути свидетельствуют и очень низкие значения ПДК: 0,0003мг/м3 в воздухе и 0,0005 мг/л в воде.

В организм человека ртуть поступает в наибольшей степени с рыбопродуктами (80 – 600мкг/кг), в которых ее содержание может многократно превышать ПДК. Мясо рыбы отличается наибольшей концентрацией ртути и ее соединений, поскольку активно аккумулирует их из воды и корма, в который входят различные гидробионты, богатые ртутью. Организм рыб способен синтезировать метилртуть, которая накапливается в печени. У некоторых рыб в мышцах содержится белок – металлотионеин, который с различными металлами, в том числе и с ртутью, образует комплексные соединения, способствуя тем самым накапливанию ртути в организме и передаче ее по пищевым цепям.

Из других пищевых продуктов характерно содержание ртути: в продуктах животноводства: мясо, печень, почки, молоко, сливочное масло, яйца (от 2 до 20 мкг/кг); в съедобных частях сельскохозяйственных растений: овощи, фрукты, бобовые, зерновые в шляпочных грибах (6-447 мкг/кг), причем в отличие от растений в грибах может синтезироваться метилртуть. При варке рыбы и мяса концентрация ртути в них снижается, при аналогичной обработке грибов остается неизменной. Это различие объясняется тем, что в грибах ртуть связана с аминогруппами азотсодержащих соединений, в рыбе и мясе – с серосодержащими аминокислотами.

Свинец - один из самых распространенных и опасных токсикантов. История его применения очень древняя, что связано с относительной простотой его получения и большой распространенностью в земной коре (1,6х10-3%). Соединения свинца - Рb3O4 и PbSO4 – основа широко применяемых пигментов: сурика и свинцовых белил. Глазури, которые используются для покрытия керамической посуды, также содержат соединения Pb. Металлический свинец со времен Древнего Рима применяют при прокладке водопроводов. В настоящее время перечень областей его применения очень широк: производство аккумуляторов, электрических кабелей, химическое машиностроение, атомная промышленность, производство эмалей, лаков, хрусталя, пиротехнических изделий, спичек, пластмасс и т.п. Мировое производство свинца составляет более 3,5х106т в год. В результате производственной деятельности человека в природные воды ежегодно попадает 500 – 600 тыс. т, а в атмосферу в переработанном и мелкодисперсном состоянии выбрасывается около 450 тыс. тонн, подавляющее большинство которого оседает на поверхности Земли. Основным источниками загрязнения атмосферы свинцом являются выхлопные газы автотранспорта (260 тыс. тонн) и сжигание каменного угля (около 30 тыс. тонн). В тех странах, где использование бензина с добавлением тетраэтилсвинца сведено к минимуму, содержание свинца в воздухе удалось многократно снизить. Следует подчеркнуть, что многие растения накапливают свинец, который передается по пищевым цепям и обнаруживается в мясе и молоке сельскохозяйственных животных, особенно активное накопление свинца происходит вблизи промышленных центров и крупных автомагистралей.

Ежедневное поступление свинца в организм человека с пищей – 0,1 – 0,5 мг; с водой – 0,02 мг. Содержание свинца в мг/кг в различных продуктах составляет от 0,01 до 3,0.

В организме человека усваивается в среднем 10 % поступившего свинца, у детей – 30 – 40 %. Из крови свинец поступает в мягкие ткани и кости, где депонируется в виде трифосфата. Механизм токсического действия свинца имеет двойную направленность. Во-первых, блокада SH – групп белков и, как следствие, - инактивация ферментов, во – вторых, проникновение Pb в нервные и мышечные клетки, образование лактата свинца, затем фосфата свинца, которые создают клеточный барьер для проникновения ионов Са2+.

Основными мишенями при воздействии свинца являются кроветворная, нервная и пищеварительная системы, а также почки. Свинцовая интоксикация может приводить к серьезным нарушениям здоровья, проявляющихся в частых головных болях, головокружениях, повышенной утомляемости, раздражительности, ухудшениях сна, гипотонии, а наиболее тяжелых случаях к параличам, умственной отсталости. Неполноценное питание, дефицит в рационе кальция, фосфора, железа, пектинов, белков, увеличивает усвоение свинца а следовательно – его токсичность. Допустимая суточная доза (ДСД) свинца составляет 0,007 мг/кг; величина ПДК в питьевой воде – 0,05 мг/л.

Мероприятия по профилактике загрязнения свинцом сырья и пищевых продуктов должны включать государственный и ведомственный контроль за промышленными выбросами свинца в атмосферу, водоемы и почву. Необходимо существенно снизить или полностью исключить применение тетраэтилсвинца в бензине, красителях, упаковочных материалах и т.п.

Кадмий широко применяется в различных отраслях промышленности. В воздух кадмий поступает вместе со свинцом при сжигании топлива на ТЭЦ, с газовыми выбросами предприятий, производящих или использующих кадмий. Загрязнение почвы кадмием происходит при оседании кадмий – аэрозолей из воздуха и дополняется внесением минеральных удобрений (суперфосфата, фосфата калия, селитры).

В некоторых странах соли кадмия применяют в качестве антисептических и антигельминтных препаратов в ветеринарии. Все это определяет основные пути загрязнения кадмием окружающей среды, а следовательно, продовольственного сырья и пищевых продуктов.

Содержание кадмия (в мкг/кг) в различных продуктах следующее. Растительные продукты: зерновые – 28-95; горох – 15–19; картофель – 12–50; капуста – 2–26; фрукты – 9–42; грибы – 100–500; в продуктах животноводства: молоко – 2,4; творог – 6,0; яйца – 23-250.

Установлено, что приблизительно 80 % кадмия поступает в организм человека с пищей, 20 % - через легкие из атмосферы и при курении. С рационом взрослый человек получает до 150 мкг/кг и выше кадмия в сутки. В одной сигарете содержится 1,5 – 2,0 мкг Cd.

Подобно ртути и свинцу, кадмий не является жизненно необходимым металлом. Попадая в организм, кадмий проявляет сильное токсическое действие, главной мишенью которого являются почки.

Механизм токсического действия кадмия связан с блокадой сульфгидрильных групп белков; кроме того он является антагонистом цинка, кобальта, селена, ингибирует активность ферментов, содержащих указанные металлы.

Известна способность кадмия нарушать обмен железа и кальция. Все это может привести к широкому спектру заболеваний: гипертоническая болезнь, анемия, ишемическая болезнь сердца, почечная недостаточность и другие.

Отмечены канцерогенный, мутагенный и тератогенный эффекты кадмия. По рекомендациям ВОЗ допустимая суточная доза (ДСД) кадмия – 1 мкг/кг массы тела.

Большое значение в профилактике интоксикации кадмием имеет правильное питание (включение в рацион белков, богатых серосодержащими аминокислотами, аскорбиновой кислоты, железа, цинка, селена, кальция), контроль за содержанием кадмия и исключение из рациона продуктов, богатых кадмием.

Алюминий. Первые данные о токсичности алюминия были получены в 70–х годах прошлого века, и это явилось неожиданностью для человечества. Будучи третьим, по распространенности элементом земной коры и обладая ценными качествами, Al нашел широкое применение в технике и быту. Поставщиками алюминия в организм человека является алюминиевая посуда, если она контактирует с кислой или щелочной средой, вода которая обогащается ионами Al3+ при обработке ее сульфатом алюминия на водоочистительных станциях.

Существенную роль в загрязнении окружающей среды ионами Al3+ играют и кислотные дожди. Не следует злоупотреблять содержащими гидроксид алюминия лекарствами: противогеморроидальными, противоартритными, понижающими кислотность желудочного сока. Как буферную добавку вводят гидроксид алюминия и в губную помаду. Среди пищевых продуктов наивысшей концентрацией алюминия (до 20 мг/г) обладает чай.

Поступающие в организм человека ионы Al3+ в форме нерастворимого фосфата выводятся с фекалиями, частично всасываются в кровь и выводятся почками. При нарушении деятельности почек происходит накапливание алюминия, которое приводит к нарушению метаболизма Ca, Mg, P, F, сопровождающееся ростом хрупкости костей, развитием различных форм анемии. Кроме того, были обнаружены: нарушение речи, ориентации, провалы в памяти, нарушение ориентации и т.п. Все это позволяет приблизить «безобидный», считавшийся нетоксичным до недавнего времени алюминий к «мрачной тройке» супертоксикантов: ртуть, свинец, кадмий.

Мышьяк как элемент в чистом виде ядовит только в высоких концентрациях. Он принадлежит к тем микроэлементам, необходимость которых для жизнедеятельности организма человека не доказана, за исключением его стимулирующего действия на процесс кроветворения. Соединения же мышьяка, такие как мышьяковистый ангидрид, арсениты и арсенаты, сильно токсичны.

Мышьяк содержится во всех объектах биосферы (в земной коре – 2 мг/кг, в морской воде – 5 мкг/кг).

Известными источниками загрязнения окружающей среды мышьяком являются электростанции, использующие бурый уголь, медеплавильные заводы. Мышьяк используется при производстве полупроводников, стекла, красителей, инсектицидов, фунгицидов и т.д.

Нормальный уровень содержания мышьяка в продуктах питания не должен превышать 1 мг/кг. Так, например, фоновое содержание мышьяка (мг/кг): в овощах и фруктах 0,01-0,2; в зерновых 0,006-1,2; в говядине 0,005-0,05; в печени 2,0; яйцах 0,003-0,03.

Повышенное содержание мышьяка отмечается в рыбе и других гидробионтах, в частности в ракообразных и моллюсках. По данным ФАО/ВОЗ, в организм человека с суточным рационом поступает в среднем 0,05 – 0,45мг мышьяка. ДСД – 0,05 мг/кг массы тела. В зависимости от дозы мышьяк может вызывать острое и хроническое отравление. Разовая доза мышьяка 30 мг – смертельна для человека. Механизм токсического действия мышьяка связан с блокированием SH – групп белков и ферментов, выполняющих в организме самые разнообразные функции.

Медь. Содержание в земной коре составляет 4,5 мг/кг, морской воде – 1-25 мкг/кг, в организме взрослого человека – около 100 мг/кг.

Медь, в отличие от ртути и мышьяка, принимает активное участие в процессах жизнедеятельности, входя в состав ряда ферментных систем. Суточная потребность – 4-5 мг. Дефицит меди приводит к анемии, недостаточности роста, ряду других заболеваний, в отдельных случаях – к смертельному исходу.

В организме присутствуют механизмы биотрансформации меди. При длительном воздействии высоких доз меди наступает «поломка» механизмов адаптации, переходящая в интоксикацию и специфическое заболевание. В этой связи является актуальной проблема охраны окружающей среды и пищевой продукции от загрязнения медью и ее соединениями. Основная опасность исходит от промышленных выбросов, передозировки инсектицидами, другими токсичными солями меди, потребления напитков, пищевых продуктов, соприкасающихся в процессе производства с медными деталями оборудования или медной тары.

Цинк. Содержится в земной коре в количестве 65 мг/кг, морской воде – 9-21 мкг/кг, организме взрослого человека – 1,4-2,3 г/кг.

Цинк как кофактор входит в состав около 80 ферментов, участвуя тем самым в многочисленных реакциях обмена веществ. Типичными симптомами недостаточности цинка являются замедление роста у детей, половой инфантилизм у подростков, нарушения вкуса (гипогезия) и обоняния (гипосмия) и др.

Суточная потребность в цинке взрослого человека составляет 15 мг, при беременности и лактации – 20-25 мг. Цинк, содержащийся в растительных продуктах, менее доступен для организма, поскольку фитин растений и овощей связывает цинк (10% усвояемости). Цинк из продуктов животного происхождения усваивается на 40%. Содержание цинка в пищевых продуктах составляет, мг/кг: мясо – 20-40, рыбопродукты – 15-30, устрицы – 60-1000, яйца – 15-20, фрукты и овощи – 5, картофель, морковь – около 10, орехи, зерновые – 25-30, мука высшего сорта – 5-8, молоко – 2-6 мг/л. В суточном рационе взрослого человека содержание цинка составляет 13-25 мг. Цинк и его соединения малотоксичны. Содержание цинка в воде в концентрации 40 мг/л безвредно для человека.

Вместе с тем возможны случаи интоксикации при нарушении использования пестицидов, небрежного терапевтического применения препаратов цинка. Признаками интоксикации являются тошнота, рвота, боль в животе, диарея. Отмечено, что цинк в присутствии сопутствующих мышьяка, кадмия, марганца, свинца в воздухе на цинковых предприятиях вызывает у рабочих «металлургическую» лихорадку.

Известны случаи отравлений пищей или напитками, хранившимися в железной оцинкованной посуде. Такие продукты содержали 200-600 мг/кг и более цинка. В этой связи приготовление и хранение пищевых продуктов в оцинкованной посуде запрещено. ПДК цинка в питьевой воде – 5 мг/л, для водоемов рыбохозяйственного назначения – 0,01 мг/л.

Олово. Необходимость олово для организма человека не доказана. Вместе с тем пищевые продукты содержат этот элемент до 1-2 мг/кг, организм взрослого человека – около 17 мг олова, что указывает на возможность его участия в обменных процессах.

Количество олова в земной коре относительно невелико. При поступлении олова с пищей всасывается около 1%. Олово выводится из организма с мочой и желчью.

Неорганические соединения олова малотоксичны, органические – более токсичны, находят применение в сельском хозяйстве в качестве фунгицидов, в химической промышленности – как стабилизаторы поливинилхлоридных полимеров. Основным источником загрязнения пищевых продуктов оловом являются консервные банки, фляги, железные и медные кухонные котлы, другая тара и оборудование, которые изготавливаются с применением лужения и гальванизации. Активность перехода олова в пищевой продукт возрастает при температуре хранения выше 200С, высоком содержании в продукте органических кислот, нитратов и окислителей, которые усиливают растворимость олова.

Опасность отравления оловом увеличивается при постоянном присутствии его спутника – свинца. Не исключено взаимодействие олова с отдельными веществами пищи и образование более токсичных органических соединений. Повышенная концентрация олова в продуктах придает им неприятный металлический привкус, изменяет цвет. Имеются данные, что токсичная доза олова при его однократном поступлении – 5-7 мг/кг массы тела, т.е. 300-500 мг. Отравление оловом может вызвать признаки острого гастрита (тошнота, рвота и др.), отрицательно влияет на активность пищеварительных ферментов.

Действенной мерой предупреждения загрязнения пищи оловом является покрытие внутренней поверхности тары и оборудования стойким, гигиенически безопасным лаком или полимерным материалом, соблюдение сроков хранения баночных консервов, особенно продуктов детского питания, использование для некоторых консервов (в зависимости от рецептуры и физико-химических свойств) стеклянной тары.

Железо. Занимает четвертое место среди наиболее распространенных в земной коре элементов (5% земной коры по массе).

Этот элемент необходим для жизнедеятельности как растительного, так и животного организма. У растений дефицит железа проявляется в желтизне листьев и называется хлорозом, у человека вызывает железодефицитную анемию, поскольку двухвалентное железо – кофактор в гемсодержащих ферментах, участвует в образовании гемоглобина. Железо выполняет целый ряд других жизненно важных функций: перенос кислорода, образование эритроцитов, обеспечивает активность негемовых ферментов – альдолазы, триптофаноксигеназы и т.д.

В организме взрослого человека содержится около 4,5 г железа. Содержание железа в пищевых продуктах колеблется в пределах 0,07-4 мг/100г. Основным источником железа в питании являются печень, почки, бобовые культуры (6-20 мг/100 г). потребность взрослого человека в железе составляет около 14 мг/сут, у женщин в период беременности и лактации она возрастает.

Железо из мясных продуктов усваивается организмом на 30%, из растений – 10%. Последнее объясняется тем, что растительные продукты содержат фосфаты и фитин, которые образуют с железом труднорастворимые соли, что препятствует его усвояемости. Чай также снижает усвояемость железа в результате связывания его с дубильными веществами в труднорастворимый комплекс.

Несмотря на активное участие железа в обмене веществ, этот элемент может оказывать токсическое действие при поступлении в организм в больших количествах. Так, у детей после случайного приема 0,5 г железа или 2,5 г сульфата железа наблюдали состояние шока. Широкое промышленное применение железа, распространение его в окружающей среде повышает вероятность хронической интоксикации. Загрязнение пищевых продуктов железом может происходить через сырье, при контакте с металлическим оборудованием и тарой, что определяет соответствующие меры профилактики.




Поделиться с друзьями:


Дата добавления: 2017-01-13; Просмотров: 2029; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.