Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

В виде основных элементарных функций




Нахождение приближающей функции

 

Рассмотрим наиболее часто встречающиеся в практических исследованиях эмпирические зависимости.

3.3.1. Линейная функция (линейная регрессия). Начальным пунктом анализа зависимостей обычно является оценка линейной зависимости переменных. Следует при этом учитывать, однако, что «наилучшая» по методу наименьших квадратов прямая линия всегда существует, но даже наилучшая не всегда является достаточно хорошей. Если в действительности зависимость y=f(x) является квадратичной, то ее не сможет адекватно описать никакая линейная функция, хотя среди всех таких функций обязательно найдется «наилучшая». Если величины х и у вообще не связаны, мы также всегда сможем найти «наилучшую» линейную функцию y=ax+b для данной совокупности наблюдений, но в этом случае конкретные значения а и b определяются только случайными отклонениями переменных и сами будут очень сильно меняться для различных выборок из одной и той же генеральной совокупности.

Рассмотрим теперь задачу оценки коэффициентов линейной регрессии более формально. Предположим, что связь между x и y линейна и искомую приближающую функцию будем искать в виде:

. (6)

Найдем частные производные по параметрам: .

Подставим полученные соотношения в систему вида (5):

Далее имеем:

или, деля каждое уравнение на n:

Введем обозначения:

(7)

Тогда последняя система будет иметь вид:

(8)

Коэффициенты этой системы Mx, My, Mxy, Mx2 – числа, которые в каждой конкретной задаче приближения могут быть легко вычислены по формулам (7), где xi, yi – значения из таблицы (1). Решив систему (8), получим значения параметров a и b, а следовательно, и конкретный вид линейной функции (6).

Необходимым условием для выбора линейной функции в качестве искомой эмпирической формулы является соотношение [38]:

.

3.3.2. Квадратичная функция (квадратичная регрессия). Будем искать приближающую функцию в виде квадратного трехчлена:

. (9)

Находим частные производные:

.

Составим систему вида (5):

После несложных преобразований получается система трех линейных уравнений с тремя неизвестными a, b, c. Коэффициенты системы так же, как и в случае линейной функции, выражаются только через известные данные из таблицы (1):

(10)

Здесь использованы обозначения (7), а также

Решение системы (10) дает значение параметров a, b и с для приближающей функции (9).

Квадратичная регрессия применяется, если все выражения вида
у2 -2y1 + y0, y3 -2 y2 + y1, y4 -2 y3 + y2 и т.д. мало отличаются друг от друга.

3.3.3. Степенная функция (геометрическая регрессия). Найдем теперь приближающую функция в виде:

. (11)

Предполагая, что в исходной таблице (1) значения аргумента и значения функции положительны, прологарифмируем равенство (11) при условии а>0:

. (12)

Так как функция F является приближающей для функции f, функция lnF будет приближающей для функции lnf. Введем новую переменную u=lnx; тогда, как следует из (12), lnF будет функцией от u: Ф(u).

Обозначим

. (13)

Теперь равенство (12) принимает вид:

, (14)

т.е. задача свелась к отысканию приближающей функции в виде линейной. Практически для нахождения искомой приближающей функции в виде степенной (при сделанных выше предположениях) необходимо проделать следующее:

1) по данной таблице (1) составить новую таблицу, прологарифмировав значения x и y в исходной таблице;

2) по новой таблице найти параметры А и В приближающей функции вида (14);

3) использовав обозначения (13), найти значения параметров a и m и подставить их в выражение (11).

Необходимым условием для выбора степенной функции в качестве искомой эмпирической формулы является соотношение [38]:

.

3.3.4. Показательная функция. Пусть исходная таблица (1) такова, что приближающую функцию целесообразно искать в виде показательной функции:

. (15)

Прологарифмируем равенство (15):

. (16)

Приняв обозначения (13), перепишем (16) в виде:

. (17)

Таким образом, для нахождения приближающей функции в виде (15) нужно прологарифмировать значения функции в исходной таблице (1) и, рассматривая их совместно с исходными значениями аргумента, построить для новой таблицы приближающую функцию вида (17). Вслед за этим в соответствии с обозначениями (13) остается получить значения искомых параметров a и b и подставить их в формулу (15).

Необходимым условием для выбора показательной функции в качестве искомой эмпирической формулы является соотношение [38]:

.

3.3.5. Дробно-линейная функция. Будем искать приближающую функцию в виде:

. (18)

Равенство (18) перепишем следующим образом:

.

Из последнего равенства следует, что для нахождения значений параметров a и b по заданной таблице (1) нужно составить новую таблицу, у которой значения аргумента оставить прежними, а значения функции заменить обратными числами, после чего для полученной таблицы найти приближающую функцию вида ax+b. Найденные значения параметров a и b подставить в формулу (18).

Необходимым условием для выбора дробно-линейной функции в качестве искомой эмпирической формулы является соотношение [38]:

.

3.3.6. Логарифмическая функция. Пусть приближающая функция имеет вид:

. (19)

Легко видеть, что для перехода к линейной функции достаточно сделать подстановку lnx=u. Отсюда следует, что для нахождения значений a и b нужно прологарифмировать значения аргумента в исходной таблице (1) и, рассматривая полученные значения в совокупности с исходными значениями функции, найти для полученной таким образом новой таблицы приближающую функцию в виде линейной. Коэффициенты a и b найденной функции подставить в формулу (19).

Необходимым условием для выбора логарифмической функции в качестве искомой эмпирической формулы является соотношение [38]:

.

3.3.7. Гипербола. Если точечный график, построенный по таблице (1), дает ветвь гиперболы, приближающую функцию можно искать в виде:

. (20)

Для перехода к линейной функции сделаем подстановку .

. (21)

Практически перед нахождением приближающей функции вида (20) значения аргумента в исходной таблице (1) следует заменить обратными числами и найти для новой таблицы приближающую функцию в виде линейной вида (21). Полученные значения параметров а и b подставить в формулу (20).

Необходимым условием для выбора уравнения гиперболы в качестве искомой эмпирической формулы является соотношение [38]:

.

3.3.8. Дробно-рациональная функция. Пусть приближающая функция находится в виде:

. (22)

Очевидно, что

,

так что задача сводится к случаю, рассмотренному в предыдущем пункте. Действительно, если в исходной таблице заменить значения х и у их обратными величинами по формулам и и искать для новой таблицы приближающую функцию вида u=bz+a, то найденные значения а и b будут искомыми для формулы (22).

Необходимым условием для выбора дробно-рациональной функции в качестве искомой эмпирической формулы является соотношение [38]:

.

В заключение отметим: может получиться, что ни одна из рассмотренных выше функций не приближает достаточно удовлетворительно имеющиеся эмпирические данные. В таком случае вид эмпирической кривой выбирают исходя из каких-то других известных данных о поведении функции. Иногда это помогают сделать специальные компьютерные программы аппроксимации экспериментальных данных [38].

 

ЛАБОРАТОРНАЯ РАБОТА №3

Задание: Аппроксимировать функцию, заданную таблично, линейной функцией.

 

Образец выполнения задания

 

Зададим функцию таблично

n:= 11 число значений аргумента

a:= 2 начальное значение аргумента

h:= 0.7 шаг изменения аргумента

aa:= 0.3 bb:= 0.7 числовые коэффициенты

i:= 0.. n

xi:= a + i×h значения аргумента

yci:= (-1)i×rnd(1) + aa + bb×xi значения функции, случайная добавка
(-1)irnd(1) позволяет придать данным естественный вид.

Графическое представление полученной функции

 

Воспользуемся формулами для вычисления коэффициентов линейной зависимости:

 

 

 

yi:= ab0 + ab1×xi искомая линейная функция

Проиллюстрируем решение графически:

 

 

В пакете MathCad имеются встроенные функции, которые позволяют быстрее решить задачу линейной регрессии. Это выполняется функцией slope(vx,vy), которая вычисляет наклон линии регрессии в смысле наименьших квадратов для данных из vx и vy, и функцией intercept(vx,vy), которая вычисляет смещение по оси ординат линии регрессии. Окончательно линия регрессии определяется в виде:

y= slope(vx,vy)*x+ intercept(vx,vy)

На рисунке 7 показано, как можно использовать эти функции, чтобы провести линию через набор выборочных точек.


 





Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 714; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.042 сек.