Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Асимптоти графіка функцій




Дослідження функції на екстемум.

Формула Тейлора.

Нехай функція має в точці і деякому її околі похідні порядку п +1. Це означає, що функція та її похідні до порядку п включно неперервні і диференційовні в цьому околі. Тоді справедлива формула Тейлора

де деякий залишковий член, причому при (0!=1 у формулі (17)).

Отже, формула Тейлора надає можливість розкласти функцію у степеневий ряд в околі деякої точки .

Зауваження. Формулою Маклорена називають формулу Тейлора (17) при .

Приклад 1. Знайти .

Маємо невизначеність . Розкладемо функції і у ряд Маклорена з необхідною точністю:

Тоді маємо:

Приклад 2. Знайти .

Маємо невизначеність . Розкладемо функцію в ряд Маклорена: У результаті отримуємо:

.

Нехай функція диференційована на інтервалі . Точка називається точкою екстремуму, якщо .

Точка екстемуму називається локальним мінімумом (максимумом), якщо ліворуч від цієї точки і праворуч від цієї точки.

Крім того, у точці локального мінімуму (максимуму) справедливе співвідношення .

Точка називається точкою перегину, якщо 1) і 2) має різні знаки ліворуч і праворуч від точки .

Приклад 1. Дослідити функцію на екстремум.

Знаходимо похідну і прирівнюємо її нулю: . Отже, точками екстремуму є і . Відмітивши їх на осі х (Рис. 3.1), дослідимо на її верхній частині знак похідної функції в околі цих точок екстремуму, а в її нижній частині – інтервали монотонності даної функції. У результаті маємо: на інтервалі () (функція зростає), на інтервалі (функція спадає), і, нарешті, на інтервалі (функція знову зростає). Це означає, що функція у точці має локальний максимум , а у точці х= 1 – локальний мінімум . Дійсно, і .

 

 

+ max – min +

x

1

Рис. 3.1. Дослідження функції на екстремум

 

– +

х

Рис. 3.2. Дослідження функції на перегин

 

Дослідимо, чи має дана функція точку перегину. Для цього знайдемо другу похідну і прирівняємо її до нуля: . З

Рис. 3.2 видно, що має різні знаки ліворуч і праворуч від точки і, отже, дана точка є точкою перегину функції . Її графік наведено на Рис. 3.3.

 
 


4 у

 
 


2

 
 

 

 


0 1 х

 
 


-2

       
   
 
 

 

 


-4

-2 -1 0 1 2

Рис. 3.3. Графік функції

 




Поделиться с друзьями:


Дата добавления: 2015-05-24; Просмотров: 517; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.