КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дедукция
В теории £ импликация тесно связана с выводимостью. Теорема дедукции используется при доказательстве теорем, т. к. дает нам новое правило вывода. Теорема (дедукции). Если Г – множество формул, А и B Î Г и A|-£B, то Г|-А→В. В частности A|-B, то А→В.
Доказательство. Пусть E1,E2,….En вывод B из Г, A. En = B. Покажем, что Г|-£А→ Ei, Пусть i=1. Возможны 3 случая. 1) Пусть Е1 – аксиома. Тогда рассмотрим вывод: 1. Е1 2. А1:
3. Из 1 и 2 по правилу m.p. получаем |-£А→ E1.
2) Пусть Е1 3) Пусть Е1 Таким образом Г Пусть i<k. Рассмотрим вывод Ek. Возможны 4 случая: 1) Ek – аксиома. 2) Е1 3) Е1 4) Ek получена из формул Ei и Ej по правилу m.p., причем i,j<k и Ei=Ej® Ek. Для 1), 2), 3) доказательство аналогично доказательству при i=1. Для 4) случая: 1. 2.
3. А2: 4. По правилу m.p. из (j) и (n) получаем 5. По правилу m.p. из (j) и (n+1) получаем Таким образом,
Схема аксиом A3 теории £ в доказательстве не использовалась, поэтому теорема дедукции имеет место для более широкого класса теорий, чем £. Следствие 1. Если Доказательство. По теореме дедукции, если
Следствие 2. Доказательство. 1. Гипотеза 2. Гипотеза с. 3. Гипотеза А. 4. По правилу m.p. из 1 и 3 получаем B. 5. По правилу m.p. из 2 и 4 получаем C 6. Из 1-5 получаем: если 7. По теореме дедукции
Следствие 3. Доказательство. 1. Гипотеза 2. Гипотеза A. 3. По правилу m.p. из 1 и 2 получим 4. В – гипотеза. 5. По правилу m.p. из 3 и 4 получим С. 6. Из 1-5 получаем: 7. по теореме дедукции
2.9. Некоторые теоремы теории £ Множество теорем теории £ бесконечно. Рассмотрим некоторые из них. 1. 2. 3. 4. 5. и т. д. (Вывод законов см. Ф.А. Новиков “Дискретная математика для программистов”, стр.114). Теорема. Теоремами теории £ являются только общезначимые формулы.
Следствие. Теория £ формально непротиворечива.
Выводы. 1. Можно задать некоторые правила преобразования формул, которые обладают свойством: при применении к общезначимым формулам они дают в результате общезначимые формулы. Такими правилами являются правила вывода. 2. Можно задать конечное число общезначимых формул таких, что любая общезначимая формула может быть получена из них с помощью правил вывода.
Дата добавления: 2014-01-15; Просмотров: 431; Нарушение авторских прав?; Мы поможем в написании вашей работы! |