КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Самоприменимость МТ
Рассмотрим машины Тьюринга, внешние алфавиты которых содержат символы 0,1 (наряду с другими). Для каждой машины Тьюринга Т построим Код(Т), который является (0,1)-словом, и запустим машину Т в начальной конфигурации q1Код(Т). Если машина Т останавливается (т.е. попадает в заключительное состояние) через конечное число шагов, то она называется самоприменимой, в противном случае – несамоприменимой. Существуют как самоприменимые, так и несамоприменимые машины Тьюринга. Например, несамоприменимой будет машина Т1, у которой все команды имеют вид qiaj→qiajС (в правых частях команд нет заключительного состояния), самоприменимой будет машина Т1, у которой все команды имеют вид qiaj→q0ajE (в правых частях всех команд имеется заключительное состояние). Проблема самоприменимости состоит в том, чтобы по любой машине Тьюринга Т определить, является ли она самоприменимой или нет. Будем считать, что машина Тьюринга М решает проблему самоприменимости, если для любой машины Т начальную конфигурацию q1Код(Т) она переводит в q01, если машина Т самоприменима, и в q00, если машина Т несамоприменима. Теорема 1. Не существует машины Тьюринга М, решающей проблему самоприменимости, т.е. проблема самоприменимости алгоритмически неразрешима. Доказательство (от противного). Предположим противное, т.е. пусть существует машина Тьюринга М, решающая проблему самоприместимости в указанном выше смысле. Построим новую машину М0, добавив новое состояние q0* и объявив его заключительным, а также добавив новые команды для состояния q0, которое было заключительным в М: q01→q01С (1) q00→q0* 0С (2). Рассмотрим теперь работу машины М0. Пусть Т – произвольная машина. Если Т – самоприменима, то начальная конфигурация q1Код(Т) перейдет с помощью команд машины М через конечное число шагов в конфигурацию q01, далее применяется команда (1), и машина М0 никогда не остановится. Если Т – несамоприменима, то начальная конфигурация q1Код(Т) перейдет с помощью команд машины М через конечное число шагов в конфигурацию q00, далее применяется команда (2), и машина М0 остановится. Таким образом, машина М0 применима к кодам самоприменимых машин Т и неприменима к кодам самоприменимых машин Т. Теперь рассмотрим Код(М0) и применим машину М0 к начальной конфигурации q1Код(М0). Сама машина М0 является либо самоприменимой, либо несамоприменимой. Если М0 самоприменима, то по доказанному она никогда не остановится, начав с q1Код(М0), и потому она несамоприменима. Если М0 несамоприменима, то по доказанному, она останавливается через конечное число шагов, начав с q1Код(М0), и потому она самоприменима. Получили противоречие, которое является следствием допущения существования машины М0, решающей проблему самоприменимости, что и требовалось доказать.
Дата добавления: 2014-01-15; Просмотров: 393; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |