КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Элементы высшей алгебры
Основные понятия теории множеств.
Определение. Множеством М называется объединение в единое целое определенных различимых объектов а, которые называются элементами множества. а Î М
Множество можно описать, указав какое – нибудь свойство, присущее всем элементам этого множества. Множество, не содержащее элементов, называется пустым и обзначается Æ.
Определение. Если все элементы множества А являются также элементами множества В, то говорят, что множество А включается (содержится) в множестве В.
А
В
А Ì В
Определение. Если А Í В, то множество А называется подмножеством множества В, а если при этом А ¹ В, то множество А называется собственным подмножеством множества В и обозначается А Ì В.
Для трех множеств А, В, С справедливы следующие соотношения.
Связь между включением и равенством множеств устанавливается следующим соотношением: Здесь знак Ù обозначает конъюнкцию (логическое “и”).
Операции над множествами. Определение. Объединением множеств А и В называется множество С, элементы которого принадлежат хотя бы одномк из множеств А и В. Обозначается С = А È В.
А В
Геометрическое изображение множеств в виде области на плоскости называется диаграммой Эйлера – Венна.
Определение. Пересечением множеств А и В называется множество С, элементы которого принадлежат каждому из множеств А и В. Обозначение С = А Ç В.
А С В
Для множеств А, В и С справедливы следующие свойства:
А Ç А = А È А = А; A È B = B È A; A Ç B = B Ç A;
(A Ç B) Ç C = A Ç (B Ç C); (A È B) È C = A È (B È C);
A È (B Ç C) = (A È B) Ç (A È C); A Ç (B È C) = (A Ç B) È (A Ç C);
A È (A Ç B) = A; A Ç (A È B) = A;
Æ = А; A Ç Æ = Æ;
Определение. Разностью множеств А и В называется множество, состоящее из элементов множества А, не принадлежащих множеству В. Обозначается С = А В.
А В
Определение. Симметрической разностью множеств А и В называется множество С, элементы которого принадлежат в точности одному из множеств А или В. Обозначается А D В.
А D В = (A B) È (B A)
A B
Определение. СЕ называется дополнением множества А относительно множества Е, если А Í Е и CЕ = Е A.
A E
Для множеств А, В и С справедливы следующие соотношения:
A B Í A; A A = Æ; A (A B) = A Ç B;
A D B = B D A; A D B = (A È B) (A Ç B);
A (B È C) = (A B) Ç (A C); A (B Ç C) = (A B) È (A C);
(A È B) C = (A C) È (B C); (A Ç B) C = (A C) Ç (B C);
A (B C) = (A B) È (A Ç C); (A B) C = A (B È C);
(A D B) D C = A D (B D C); A Ç (B D C) = (A Ç B) D (A Ç C);
A È CEA = E; A Ç CEA = Æ; CEE = Æ; CEÆ = E; CECEA = A;
CE(A È B) = CEA Ç CEB; CE(A Ç B) = CEA È CEB;
Пример. Исходя из определения равенства множеств и операций над множествами, доказать тождество и проверить его с помощью диаграммы Эйлера - Вейна.
Из записанных выше соотношений видно, что
Æ= A В
Что и требовалось доказать. Для иллюстрации полученного результата построим диаграммы Эйлера – Вейна
А В А В
AÇB
Пример. Исходя из определения равенства множеств и операций над множествами, доказать тождество. A (B È C) = (A B) Ç (A C)
Если некоторый элемент х Î А (В È С), то это означает, что этот элемент принадлежит множеству А, но не принадлежит множествам В и С. Множество А В представляет собой множество элементов множества А, не принадлежащих множеству В. Множество А С предсталяет собой множество элементов множества А, не принадлежащих множеству С. Множество (A B) Ç (A C) представляет собой множество элементов, которые принадлежат множеству А, но не принадлежат ни множеству В, ни множеству С. Таким образом, тождество можно считать доказанным.
Алгебраические структуры.
Определение. Полем называется коммутативное кольцо, в котором для любого ненулевого элемента a¹ 0 и любого элемента b существует единственный элемент х такой, что ax = b.
Дата добавления: 2014-01-15; Просмотров: 659; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |