Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Квантовые генераторы

В квантовых генераторах для создания электромагнитных ко­лебаний используется внутренняя энергия микросистем — атомов, молекул, ионов.

Квантовые генераторы называют еще лазерами. Слово лазер составлено из начальных букв английского названия квантовых генераторов — усилитель света за счет создания стимулированно­го излучения.

Принцип действия квантового генератора состоит в следующем. При рассмотрении энергетической структуры вещества было по­казано, что изменение энергии микрочастиц (атомов, молекул, ио­нов, электронов) происходит не непрерывно, а дискретно — пор­циями, названными квантами (от латинского quantim — количе­ство).

Микросистемы, в которых элементарные частицы взаимодейст­вуют между собой, называются квантовыми системами.

Переход квантовой системы из одного энергетического состоя­ния в другое сопровождается излучением или поглощением кван­та электромагнитной энергии hv: Е2— Ei=hv, где Е1 и Е2 — энер­гетические состояния: h — постоянная Планка; v — частота.

Известно, что наиболее устойчивым состоянием любой систе­мы, в том числе атома и молекулы, является состояние с наимень­шей энергией. Поэтому каждая система стремится занять и со­хранять состояние с наименьшей энергией. Следовательно, в нор­мальном состоянии электрон движется по наиболее близкой к ядру орбите. Такое состояние атома называется основным или ста­ционарным.

Под действием внешних факторов — нагрева, освещения, элек­тромагнитного поля — энергетическое состояние атома может из­меняться.

Если атом, например, водорода взаимодействует с электромаг­нитным полем, то он поглощает энергию Е2E1 = hv и его элек­трон переходит на более высокий энергетический уровень. Такое состояние атома называется возбужденным. В нем атом может находиться некоторое очень малое время, называемое временем жизни возбужденного атома. После этого электрон возвращает­ся на нижний уровень, т. е. в основное устойчивое состояние, от­давая избыток энергии в виде излучаемого кванта энергии — фо­тона.

Излучение электромагнитной энергии при переходе квантовой системы из возбужденного состояния в основное без внешнего воз­действия называется самопроизвольным или спонтанным. При спонтанном излучении фотоны испускаются в случайные моменты времени, в произвольном направлении, с произвольной поляриза­цией. Поэтому оно называется некогерентным.

Однако под действием внешнего электромагнитного поля элек­трон может быть возвращен на нижний энергетический уровень еще до истечения времени жизни атома в возбужденном состоя­нии. Если, например, два фотона воздействуют на возбужденный атом, то при определенных условиях электрон атома возвращается на нижний уровень, излучая квант в виде фотона. При этом все три фотона имеют общую фазу, направление и поляризацию из­лучения. В результате энергия электромагнитного излучения ока­зывается увеличенной.

Излучение электромагнитной энергии квантовой системой при снижении ее энергетического уровня под действием внешнего элек­тромагнитного поля называют вынужденным, индуцированным или стимулированным.

Индуцированное излучение совпадает по частоте, фазе и на­правлению с внешним облучением. Отсюда такое излучение на­зывают когерентным (когерентность—от латинского cogerentia — сцепление, связь).

Так как на стимулирование перехода системы на более низ­кий энергетический уровень энергия внешнего поля не затрачива­ется, то электромагнитное поле усиливается и его энергия возра­стает на значение энергии излучаемого кванта. Это явление ис­пользуется для усиления и генерирования колебаний с помощью квантовых приборов.

В настоящее время лазеры изготовляют из полупроводниковых материалов.

Полупроводниковым лазером называют полупроводниковый прибор, в котором происходит непосредственное преобразование электрической энергии в энергию излучения оптического диапа­зона.

Для работы лазера, т. е. для того, чтобы лазер создавал элек­тромагнитные колебания, необходимо, чтобы в его веществе воз­бужденных частиц было больше, чем невозбужденных.

Но в нормальном состоянии полупроводника на более высо­ких энергетических уровнях при любой температуре количество электронов меньше, чем на более низких уровнях. Поэтому в нор­мальном состоянии полупроводник поглощает электромагнитную энергию.

Наличие электронов на том или ином уровне называется насе­ленностью уровня.

Состояние полупроводника, в котором на более высоком энер­гетическом уровне находится больше электронов, чем на более низком уровне, называется состоянием с инверсной населенностью. Создавать инверсную населенность можно различными способа­ми: с помощью инжекции носителей заряда при прямом включе­нии р — я-перехода, путем облучения полупроводника светом и т. д.

Источник энергии, создавая инверсию населенностей, выполня­ет работу, передавая энергию веществу и далее электромагнитно­му полю. В полупроводнике с инверсной населенностью можно получить вынужденное излучение, так как в нем имеется боль­шое количество возбужденных электронов, которые могут отдать свою энергию.

Если полупроводник с инверсной населенностью облучить элек­тромагнитными колебаниями частотой, равной частоте перехода между энергетическими уровнями, то электроны с верхнего уров­ня переходят на нижний вынужденно, излучая фотоны. При этом происходит вынужденное когерентное излучение. Оно является усиленным. Создав в таком устройстве цепь положительной обрат­ной связи, получим лазер — автогенератор электромагнитных ко­лебаний оптического диапазона.

Для изготовления лазеров чаще всего используют арсенид гал­лия, из которого изготовляют кубик со сторонами длиной в не­сколько десятых долей миллиметра.

 

Глава 4. СТАБИЛИЗАЦИЯ ЧАСТОТЫ ПЕРЕДАТЧИКОВ

<== предыдущая лекция | следующая лекция ==>
Генераторы ультракоротких волн | Дестабилизирующие факторы и параметрические способы стабилизации частоты
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 5239; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.