Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определения. Сравнение бесконечно малых




Сравнение бесконечно малых

Свойства бесконечно малых

Бесконечно большая величина

Бесконечно малая величина

Исчисление бесконечно малых и больших

Бесконечно малая и бесконечно большая

Бесконечно малая (величина) — числовая функция или последовательность, которая стремится к нулю.

Бесконечно большая (величина) — числовая функция или последовательность, которая стремится к бесконечности определённого знака.

Содержание · 1 Исчисление бесконечно малых и больших o 1.1 Бесконечно малая величина o 1.2 Бесконечно большая величина o 1.3 Свойства бесконечно малых · 2 Сравнение бесконечно малых o 2.1 Определения o 2.2 Примеры сравнения · 3 Эквивалентные величины o 3.1 Определение o 3.2 Теорема o 3.3 Примеры использования · 4 Исторический очерк

Исчисление бесконечно малых — вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Исчисление бесконечно малых величин является общим понятием для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Понятие бесконечно малой величины тесно связано с понятием предела.

Последовательность an называется бесконечно малой, если. Например, последовательность чисел — бесконечно малая.

Функция называется бесконечно малой в окрестности точки x 0, если.

Функция называется бесконечно малой на бесконечности, если либо.

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если, то f (x) − a = α(x),.

Во всех приведённых ниже формулах бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция x sin x, неограниченная с обеих сторон, не является бесконечно большой при.

Последовательность an называется бесконечно большой, если.

Функция называется бесконечно большой в окрестности точки x 0, если.

Функция называется бесконечно большой на бесконечности, если либо.

· Сумма конечного числа бесконечно малых — бесконечно малая.

· Произведение бесконечно малых — бесконечно малая.

· Произведение бесконечно малой последовательности на ограниченную — бесконечно малая. Как следствие, произведение бесконечно малой на константу — бесконечно малая.

· Если an — бесконечно малая последовательность, сохраняющая знак, то — бесконечно большая последовательность.

Отношение бесконечно малых величин образует так называемую неопределённость.

Допустим, у нас есть бесконечно малые при одном и том же величины α(x) и β(x) (либо, что не важно для определения, бесконечно малые последовательности).

· Если, то β — бесконечно малая высшего порядка малости, чем α. Обозначают β = o (α).

· Если, то β — бесконечно малая низшего порядка малости, чем α. Соответственно α = o (β).

· Если (предел конечен и не равен 0), то α и β являются бесконечно малыми величинами одного порядка малости.

Это обозначается как β = O (α) или α = O (β) (в силу симметричности данного отношения).

· Если (предел конечен и не равен 0), то бесконечно малая величина β имеет m-й порядок малости относительно бесконечно малой α.

Для вычисления подобных пределов удобно использовать правило Лопиталя.




Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 387; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.