Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 1.5. Методы математического программирования

Читайте также:
  1. A) Методы геометрических преобразований
  2. A. Методы ядерных сил.
  3. E) методы (methods).
  4. G. Альтернативные методы измерения количества топлива
  5. I Укрупненные методы
  6. I. Введение. Методы обследования больного с
  7. I. Дистанционные методы лучевой терапии
  8. I. Методы социологии
  9. I. ТЕМА: «Реанимация и методы проведения».
  10. IEEE 1471-2000 Recommended Practice for Architectural Description of Software-Intensive Systems [3] (рекомендуемые методы описания архитектуры программных систем).
  11. II Точные методы
  12. II. Контактные методы лучевой терапии



Пример 1.4.7

Допустим, планируется некоторая торгово-производственная операция успех которой зависит от того, юбки какой длины будут носит женщины через два года.

Понятно, что распределение этой вероятностной величины не может быть получено не из каких статистических данных. Что же делать в этом случае?

Можно поступить следующим образом. Задаться каким более или менее правдоподобным значением вероятностного параметра и решить данную задачу, как обычную детерминированную задачу. Но полученное решение может и не быть оптимальным, просто мы получим некоторое компромиссное решение.

 

В настоящее время полноценной научной теории компромисса не существует, хотя некоторые попытки в этом направлении в теории игр и статистических решений делаются.


 

Выше уже упоминалось о самых простых - детерминированных и одноцелевых задачах, исследованием которых занимается математическое программирование. Слово программирование в данном случае означает "планирование".

К математическому программированию относится:

  1. Линейное программирование: состоит в нахождении экстремального значения линейной функции многих переменных при наличии линейных ограничений, связывающих эти переменные;
  2. Нелинейное программирование: целевая функция и ограничения могут быть нелинейными функциями;
  3. Особым случаем в задачах линейного и нелинейного программирования является случай, когда на оптимальные решения накладывается условие целочисленности. Такие задачи относятся к целочисленному программированию;
  4. Динамическое программирование: для отыскания оптимального решения планируемая операция разбивается на ряд шагов (этапов) и планирование осуществляется последовательно от этапа к этапу. Однако выбор метода решения на каждом этапе производится с учетом интересов операции в целом;
  5. Теория графов: с помощью теории графов решаются многие сетевые задачи, связанные с минимальным протяжением сети, построение кольцевого маршрута и т.д.
  6. Стохастическое линейное программирование
    Бывает много практических ситуаций, когда коэффициенты ci целевой функции, коэффициенты aij в матрице коэффициентов, коэффициенты ограничений bi - являются случайными величинами. В этом случае сама целевая функция становится случайной величиной, и ограничения типа неравенств могут выполняться лишь с некоторой вероятностью. Приходится менять постановку самих задач с учётом этих эффектов и разрабатывать совершенно новые методы их решения. Соответствующий раздел получил название стохастического программирования.
  7. Геометрическое программирование
    Под задачами геометрического программирования понимают задачи наиболее плотного расположения некоторых объектов в заданной двумерной или трехмерной области. Такие задачи встречаются в задачах раскроя материала для производства каких-то изделий и т.п. Это - еще недостаточно разработанная область математического программирования и имеющиеся здесь алгоритмы в основном ориентированы на сокращение перебора вариантов с поиском локальных минимумов.
  8. Задачами теории массового обслуживания является анализ и исследование явлений, возникающих в системах обслуживания. Одна из основных задач теории заключается в определении таких характеристик системы, которые обеспечивают заданное качество функционирования, например, минимум времени ожидания, минимум средней длины очереди.
  9. Теория игр пытается математически объяснить явления возникающие в конфликтных ситуациях, в условиях столкновения сторон. Такие ситуации изучаются психологией, политологией, социологией, экономикой.

 







Дата добавления: 2014-01-15; Просмотров: 571; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.224.197.251
Генерация страницы за: 0.005 сек.