КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример 2.1.1
Пусть имеется два станка (S1, S2), на каждом из которых можно производить два вида продукции (P1, P2). Станок S1 производит единицу продукции P1 за 1 час, а единицу продукции P2 - за 2 часа. Станок S2 затрачивает на единицу продукции P1 - 2 часа, а на единицу продукции P2 - 1 час. Станок S1 может работать в сутки не более 10 ч., а станок S2 - не более 8 ч. Стоимость единицы продукции P1 составляет C1 руб., а стоимость единицы продукции P2 - C2 руб. Требуется определить такие объемы выпуска продукции P1 и P2 на станок, чтобы выручка от реализации производственной продукции была максимальной.
Составим математическую модель задачи: Обозначим через х1 и х2 количества продукции P1 и P2, которое планируется произвести на каждом отдельном станке. Стоимость произведенной продукции F = c1 х1 + c2 х2. Мы должны назначить х1 и х2 так, чтобы величина F была максимальной. Переменные х1, х2 не могут принимать произвольных значений. Их значения ограничены условиями производства, а именно тем, что станки могут работать ограниченное время. На изготовление продукции P1 станок S1 тратит 1x1 часов, а на изготовление продукции P2 – 2x2 часов. Поскольку время работы станка S1 не превосходит 10 ч, то величины х1 и х2 должны удовлетворять неравенству x1 + 2x2<= 10. Аналогично можно получить неравенство для станка S2: 2x1 + x2 <= 8. Кроме того, величины х1, х2 не могут быть отрицательными: x1 >= 0, x2 >= 0, по смыслу задачи. Такие задачи кратко записываются следующим образом: (2.1) (2.2) (2.3) Итак, математическая модель задачи: найти такой план выпуска продукции Х = (х1, х2), удовлетворяющий системе (2.1) и условию (2.2), при котором функция (2.3) принимает максимальное значение. Решения, удовлетворяющие системе ограничений (2.1) и требованием неотрицательности (2.2), являются допустимыми, а решения, удовлетворяющие одновременно и требованием (2.3) оптимальными.
В других ситуациях могут возникать задачи с большим количеством переменных, в систему ограничений которых, кроме неравенств, могут входить и равенства. Поyтому в наиболее общей форме задачу линейного программирования формулируют следующим образом:
Коэффициенты ai,j, bi, cj, j = 1, 2,..., n, i =1, 2,..., m – любые действительные числа (возможно 0). Итак, решения, удовлетворяющие системе ограничений (2.4) условий задачи и требованиям неотрицательности (2.5), называются допустимыми, а решения, удовлетворяющие одновременно и требованиям минимизации (максимализации) (2.6) целевой функции, - оптимальными. Выше описанная задача линейного программирования (ЗЛП) представлена в общей форме, но одна и та же (ЗЛП) может быть сформулирована в различных эквивалентных формах. Наиболее важными формами задачи линейного программирования являются каноническая и стандартная. В канонической форме задача является задачей на максимум (минимум) некоторой линейной функции F, ее система ограничений состоит только из равенств (уравнений). При этом переменные задачи х1, х2,..., хn являются неотрицательными:
К канонической форме можно преобразовать любую задачу линейного программирования. Правило приведения ЗЛП к каноническому виду: 1. Если в исходной задаче некоторое ограничение (например, первое) было неравенством, то оно преобразуется в равенство, введением в левую часть некоторой неотрицательной переменной, при чем в неравенства «≤» вводится дополнительная неотрицательная переменная со знаком «+»; в случаи неравенства «≥» - со знаком «-»
Вводим переменную . Тогда неравенство (2.10) запишется в виде:
В каждое из неравенств вводится своя “ уравнивающая ” переменная, после чего система ограничений становится системой уравнений. 2. Если в исходной задаче некоторая переменная не подчинена условию неотрицательности, то ее заменяют (в целевой функции и во всех ограничениях) разностью неотрицательных переменных
3. Если в ограничениях правая часть отрицательна, то следует умножить это ограничение на (-1) 4. Наконец, если исходная задача была задачей на минимум, то введением новой целевой функции F1 = -F мы преобразуем нашу задачу на минимум функции F в задачу на максимум функции F1. Таким образом, всякую задачу линейного программирования можно сформулировать в канонической форме. В стандартной форме задача линейного программирования является задачей на максимум (минимум) линейной целевой функции. Система ограничений ее состоит из одних линейных неравенств типа «<=» или «>=». Все переменные задачи неотрицательны.
Всякую задачу линейного программирования можно сформулировать в стандартной форме. Преобразование задачи на минимум в задачу на максимум, а также обеспечение не отрицательности переменных производится так же, как и раньше. Всякое равенство в системе ограничений равносильно системе взаимопротивоположных неравенств: Существует и другие способы преобразования системы равенств в систему неравенств, т.е. всякую задачу линейного программирования можно сформулировать в стандартной форме.
Дата добавления: 2014-01-15; Просмотров: 468; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |