Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 1. Простейшие задачи, решаемые методом имитационного моделирования




Алгоритм моделирования СМО.

Решение задачи.

Начальные условия:

1. Рассматриваемая в задаче СМО представляет собой СМО с:

- двухканальным обслуживанием;

- двухканальным входным потоком (имеет 2 входа, на один из которых поступают случайный поток Заявок I, на другой вход – поток Заявок II).

2. Определение времен поступления и обслуживания заявок:

- Времена поступления и обслуживания заявок генерируются случайно с заданным показательным законом распределения;

- Интенсивности поступления и обслуживания заявок заданы;

3. Функционирование рассматриваемой СМО:

- Каждый канал обслуживает в каждый момент времени одну заявку;

- Если в момент поступления новой заявки свободен хотя бы один канал, то пришедшая заявка поступает на обслуживание;

- Если отсутствуют Заявки то система простаивает.

- Дисциплина обслуживания:

- Приоритет Заявок I: если система занята (оба канала обслуживают заявки), причем один из каналов занят Заявкой II, Заявка I вытесняют Заявку II; Заявка II покидает систему необслуженной;

- Если к моменту поступления Заявки II оба канала заняты, Заявка II не обслуживается;

- Если к моменту поступления Заявки I оба канала обслуживают Заявки I, поступившая Заявка I покидает систему необслуженной;

Задача моделирования: зная параметры входных потоков заявок промоделировать поведение системы и вычислить её основные характеристики её эффективности. Меняя величину Т от меньших значений до больших (интервал времени, в течении которого происходит случайный процесс поступления заявок 1-го и 2-го потока в СМО на обслуживание), можно найти изменения критерия эффективности функционирования и выбрать оптимальный.

Критерии эффективности функционирования СМО:

- Вероятность отказа;

- Относительная пропускная способность;

- Абсолютная пропускная способность;

Принцип моделирования:

- Вводим начальные условия: общее время работы системы, значения интенсивностей потоков заявок; число реализаций работы системы;

- Генерируем моменты времени, в которые прибывают заявки, последовательность прихода Заявок I Заявок II, время обслуживания каждой пришедшей заявки;

- Считаем сколько заявок было обслужено, а сколько получило отказ;

- Рассчитываем критерий эффективности СМО.

 

Раздел 5. Имитационное моделирование.

В исследовании операций широко применяются как аналитические, так и статистические модели. Каждый из этих типов имеет свои преимущества и недостатки. Аналитические модели более грубы, учитывают меньшее число факторов, всегда требуют каких-то допущений и упрощений. Зато результаты расчета по ним легче обозримы, отчетливее отражают присущие явлению основные закономерности. А, главное, аналитические модели больше приспособлены для поиска оптимальных решений. Статистические модели, по сравнению, с аналитическими, более

точны и подробны, не требуют столь грубых допущений, позволяют учесть большое (в теории – неограниченно большое) число факторов. Но и у них – свои недостатки: громоздкость, плохая обозримость, большой расход машинного времени, а главное, крайняя трудность поиска оптимальных решений, которые приходятся искать «на ощупь», путем догадок и проб.

Наилучшие работы в области исследования операций основаны на совместном применении аналитических и статистических моделей. Аналитическая модель дает возможность в общих чертах разобраться в явлении, наметить как бы контур основных закономерностей. Любые уточнения могут быть получены с помощью статистических моделей.

Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или другие решения, подобно тому, как шахматист, глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее «текущее решение» принимается уже с учетом реальной новой обстановки и т.д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучивается принимать правильные решения – если не оптимальные, то почти оптимальные.

Определение понятия «имитационное моделирование».

В современной литературе не существует единой точки зрения по вопросу о том, что понимать под имитационным моделированием. Так существуют различные трактовки:

- в первой – под имитационной моделью понимается математическая модель в классическом смысле;

- во второй – этот термин сохраняется лишь за теми моделями, в которых тем или иным способом разыгрываются (имитируются) случайные воздействия;

- в третьей – предполагают, что имитационная модель отличается от обычной математической более детальным описанием, но критерий, по которому можно сказать, когда кончается математическая модель и начинается имитационная, не вводится;

Имитационное моделированием применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или иные решения, подобно тому, как шахматист глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки, в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее текущее решение принимается уже с учетом реальной новой обстановки и т. д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучиваться принимать правильные решения – если не оптимальные, то почти оптимальные.

Попробуем проиллюстрировать процесс имитационного моделирования через сравнение с классической математической моделью.

Этапы процесса построения математической модели сложной системы:

1. Формулируются основные вопросы о поведении системы, ответы на которые мы хотим получить с помощью модели.

2. Из множества законов, управляющих поведением системы, выбираются те, влияние которых существенно при поиске ответов на поставленные вопросы.

3. В пополнение к этим законам, если необходимо, для системы в целом или отдельных ее частей формулируются определенные гипотезы о функционировании.

Критерием адекватности модели служит практика. Трудности при построении математической модели сложной системы:

- Если модель содержит много связей между элементами, разнообразные нелинейные ограничения, большое число параметров и т. д.

- Реальные системы зачастую подвержены влиянию случайных различных факторов, учет которых аналитическим путем представляет весьма большие трудности, зачастую непреодолимые при большом их числе;

- Возможность сопоставления модели и оригинала при таком подходе имеется лишь в начале.

Эти трудности и обуславливают применение имитационного моделирования.

Оно реализуется по следующим этапам:

1.Как и ранее, формулируются основные вопросы о поведении сложной системы, ответы на которые мы хотим получить.

2.Осуществляется декомпозиция системы на более простые части-блоки.

3.Формулируются законы и «правдоподобные» гипотезы относительно поведения как системы в целом, так и отдельных ее частей.

4.В зависимости от поставленных перед исследователем вопросов вводится так называемое системное время, моделирующее ход времени в реальной системе.

5.Формализованным образом задаются необходимые феноменологические свойства системы и отдельных ее частей.

6.Случайным параметрам, фигурирующим в модели, сопоставляются некоторые их реализации, сохраняющиеся постоянными в течение одного или нескольких тактов системного времени. Далее отыскиваются новые реализации.




Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 1284; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.