Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электробезопасность




Тема 5. Техника безопасности

5.1.1. Действие электрического тока на организм человека

Во всех без исключения производственных помещениях неотъемлемой частью основного и вспомогательного оборудования являются электрические машины и прочие потребители электроэнергии. Опыт свидетельствует, что через неправильную эксплуатацию электроустановок могут случаться случаи поражения рабочих электротоком и ожоги электрической дугой, а также повреждение кожи в виде металлизации.

При рассмотрении вопросов безопасности труда необходимо начать из того, что поражение рабочего током случается при включении его в электрическую сеть и прохождении тока через организм, что, как правило, бывает при контакте человека с неизолированными частями электроцепи. Опасная для человека сила тока зависит от его рода, напряжения в цепи проводников, от сопротивления человеческого организма, от пути прохождения тока (петли тока),состояния организма человека и состояния окружающей среды.

Проходя через организм, ток действует термическим, электролитическим и биологическим образом. Любое из этих действий может послужить причиной травмы от тока или дуги. Электротравми условно разделяют на два вида: местные электротравмы и электрические удары.

Характерные виды травм (четко выраженные местные нарушения целостности организма) – электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия.

Электрический ожог – наиболее распространенная травма (60-65% потерпевших). Различают ожоги тока и дуговые. Токовые ожеги бывают, как правило, при напряжении 1000-2000 В, дуговые – при больших напряжениях в результате образования дуги между токоведещей частью и телом человека.

Различают четыре степени ожогов: І – покраснение кожи, ІІ – образование пузырей; ІІІ – омертвление участка кожи; ІУ – обугливание кожи. Как правило, тяжесть ожога определяется не так степенью, как площадью пораженной ожогом поверхности тела.

Металлизация – проникновение в верхние слои кожи наимельчайших частичек металла, который испарился или расплавился под действием электрической дуги. Металлизация наблюдается приблизительно в 10% потерпевших от тока.

Электроофтальмия – воспаление внешних оболочек глаз под влиянием ультрафиолетового луча, который возникает от электрической дуги. Электроофтальмия наблюдается в 1-2% потерпевших от тока.

Электрический удар – это возбуждения электротоком живых тканей организма, которое сопровождается судорожными сокращениями мышц.

В зависимости от следствия действия на организм удары делятся на четырех степени:

І – судорожное сокращение мышц без потери сознания;

ІІ – судорожное сокращение мышц с потерей сознания, но с сохраненными дыханием и работой сердца;

ІІІ – клиническая смерть, то есть отсутствие дыхания и кровообращения.

1V- биологическая смерть.

Продолжительность клинической смерти определяют от момента прекращения сердечной деятельности и дыхания к началу гибели клеток коры головного мозга. Это время составляет 4-8 мин, иногда – до 15 мин.

 

5.1.2.Факторы, которые определяют тяжесть поражения электрическим током

Тяжесть електротравмы зависит от:

-параметров тока, который проходит через тело человека;

-внутреннего сопротивления человека;

-пути тока в организме человека;

-физиологического состояния организма;

-производственных условий (факторов среды).

Значение тока, который проходит через тело человека, есть основным фактором, который предопределяет исход поражения.

В таблице 5.1 представлена зависимость характера действия тока от его силы. С увеличением силы тока четко обнаруживаются три качественно отличных реакции организма: ощущение, судорожное сокращение мышц (неотпускание – для переменного тока и болевой эффект – для постоянного) и, в конце концов, фибриляция сердца – хаотичные быстрые и разновременные сокращения волокон сердечной мышцы (фибриля), при которых сердце перестает работать как насос, то есть оно не в состоянии обеспечивать движение крови по сосудам. Токи, которые вызывают соответствующую реакцию, делятся на ощутимые, на те, что не отпускают, и фибриляционные, а их минимальные значения называют пороговими.

Величина тока, который проходит в цепи, будет зависеть от сопротивления цепи. Сопротивление цепи человека Rч состоит: сопротивление тела человека rл, сопротивление одежды rод, сопротивление обуви rо и сопротивление опорной поверхности rоп, то есть

Rч = rч + rод +rо + rоп,

Rч состоит из сопротивления кожи rк и сопротивления внутренних органов rво. Как rк так и rво имеют активно-емкостный характер и зависят преимущественно от напряжения.

Поскольку сопротивление человеческого тела току не линейно и не стабильно и проводить расчеты с такими сопротивлениями сложно, будем считать, что сопротивление человеческого тела стабильно и составляет 1000 Ом.

Таблица 5.1-характер действия электрического тока на организм человека

Значение тока, мА Характер действия
Переменный ток 50 Гц Постоянный ток
     
0,6-1,6 Начало ощущения – слабое зудение, пощипывание кожи под электродами Не ощущается
2-4 Ощущение тока распространяется и на запястье руки, немного сводит руку Не ощущается
5-7 Болевые ощущения усиливаются по всей кисти руки, сопровождаясь судорогами. Слабая боль во всей руке вплоть до передплечья. Руки, как правило, можно оторвать от электродов. Начало ощущения. Впечатления, что кожа под электродом нагревается
8-10 Сильные боли и судороги по всей руке, включая предплечье. Тяжело, но преимущественно еще можно оторвать руки от электродов Усиливается ощущение нагрева
10-15 Боли по всей руке, невозможно терпеть. Часто руки невозможно оторвать. С увеличением продолжительности прохождения тока боль усиливается-величина неотпускающего тока. Еще большее усиление ощущения нагрева как под электродами, так и в близлежащих участках кожи
20-25 Руки парализуются моментально, оторваться от электродов невозможно. Сильная боль, дышать тяжело Еще большее усиление ощущения нагрева кожи, возникает ощущение нагрева внутри. Незначительные сокращения мышц рук
25-50 Очень сильная боль в руках и груди. Дышать очень тяжело, может настать паралич дыхания или ослабление деятельности сердца с потерей сознания. Ощущение сильного перегрева, боль и судороги в руках. При отрыве рук от электродов невыносимая боль вследствие судорожного сокращения мышц
50-80 Дыхание парализуется через несколько секунд, ускоряется работа сердца. При продолжительном прохождении тока может наступить фибриляция сердца Ощущение очень сильного поверхностного и внутреннего нагрева, сильная боль по всей руке и в груди. Тяжело дышать, руки невозможно оторвать от электродов через сильные боли
  Фибриляция сердца через 2-3 с, еще через несколько секунд – паралич сердца Паралич дыхания при продолжительном прохождении тока
  То же самое действие за меньшее время Фибриляция сердца через 2-3 с, еще через несколько секунд – паралич дыхания
Свыше Дыхание парализуется немедленно – через доли секунды. Фибриляция сердца, как правило, не наступает; возможна временная остановка сердца в период прохождения тока. При продолжительном прохождении тока (несколько секунд) тяжелые ожоги, разрушение тканей

Продолжительность прохождения тока через организм существенным образом влияет на результат поражения: чем продолжительней действие тока, тем большая вероятность тяжелого или смертельного исхода. Выяснена зависимость между допустимыми для человека величинами синусоидального тока частотой 50 Гц и продолжительностью действия этого тока, поскольку эта величина при 250 мА составляет 0,2 с, а при 1 ма – свыше 30 с.

Путь прохождение тока через человека существенным образом влияет на результат поражения. Опасность поражения особенно большая, если ток, проходя через жизненно важные органы – сердце, легкоге, головной мозг – действует непосредственно на них.

Пути тока в теле человека называют петлями тока. Среди тяжелых и смертельных случаях наиболее частое бывают такие петли тока: рука – рука (20% случаев), рука – нога (20%), нога – нога (напряжение шага – 8%).

Тяжесть поражения будет зависеть от схемы прикосновенья. Различают такие схемы прикосновенья человека к токопроводящим частям под напряжением: однофазное прикосновенье (прикосновенье к одной фазе трехфазной сети), однополюсное прикосновенье (до одного полюса однофазной сети или сети постоянного тока), двуфазное прикосновенье (одновременное прикосновенье до двух фаз сети) и двуполюсное прикосновенье (одновременное прикосновенье до двух полюсов электроустановки).

Род и частота тока, который проходит через тело человека, оказывают большое влияние на результат поражения. Постоянный ток приблизительно в 4-5 раз безопаснее от переменного с частотой 50 Гц (наиболее опасной для человека). При увеличении частоты (свыше 50 Гц) значения неотпускающеого тока возрастают. С уменьшением частоты от 50 Гц до 0 значение неотпускающего тока также возрастают и при частоте, равной нулю (постоянный ток), увеличиваются приблизительно втрое. Значение фибриляционого тока при частотах 50-100 Гц равны. С повышением частоты до 200 Гц сила фибриляционного тока возрастает приблизительно вдвое, а до 400 Гц – почти в три с половиной разы.

Индивидуальные особенности человека значительно влияют на результат поражения при електротравмах. Для женщин пороговые значения тока приблизительно в 1,5 раза ниже, чем для мужчин. В состоянии возбуждения нервной системы, депрессии, болезни (в особенности болезни кожи, сердечно-сосудистой системы) и опьянения люди чувствительнее к прохождению тока. Если человек подготовлен к электрическому удару, то степень опасности резко снижается, в то время как неожиданный удар приводит к тяжелым последствиям.

Правила техники безопасности предусматривают отбор по состоянию здоровья персонала для обслуживания действующих электроустановок.

Степень тяжести травмы в значительной мере зависит от вида электроустановки и состояния факторов среды помещения.

5.1.3.Классификация электроустановок и помещений

В соответствии с Правилами устройства электроустановок (ПУЭ) электроустановки с точки зрения безопасности делятся на:

-установки напряжением до 1000 В глухозаземленной нейтралью;

-установки напряжением до 1000 В з изолированной нейтралью;

-установки напряжением свыше 1000 с глухозаземленной нейтралью (с большими токами замыкания на землю);

-установки напряжением свыше 1000 В з изолированной нейтралью.

На безопасность также существенным образом влияют влажность, температура воздуха, наличие в нем химических элементов и токопроводящей пыли и т.п..

Учитывая эти признаки, в соответствии с ПУЭ, помещения делятся на три категории относительно степени поражения током:

-без повышенной опасности (в помещении отсутствуют условия для повышенной или особой опасности);

- с повышенной опасностью (для помещений характерно одно из таких условий: сырость, токопроводящие пилы – металлическая, земляные, каменные; высокая температура; возможность одновременного прикосновенья человека к металлическим частям, которые имеют соединение с землей, и к металлическим деталям, корпусов электрооборудования, которые могут оказаться под напряжением при повреждении изоляции);

- особо опасные (характеризуются одним из условий: особая сырость, химически активная среда, загазованность, одновременно два и более фактора повышенной опасности).

Различают технические и организационные причины электротравм.

К основным техническим причинам относятся: неисправность и дефекты устройства электроустановок и защитных средств, использование непринятых в эксплуатацию электроустановок и защитных средств с просроченным сроком испытаний.

К организационным причинам относятся: недостаточная обученность персонала, неправильная организация труда, недоброкачественный надзор во время работы и др.

Вообще причины попадания людей под напряжение такие:

-прикосновенье к открытым токопроводящим частям (56%);

-прикосновенье к токопроводящим частям, покрытых поврежденной изоляцией или изоляцией, которая утратила свои качества (40%);

-прикосновенье к полу, который случайно попал под напряжение, шаговое напряжение (2,5%);

-поражение через электрическую дугу (1,5%).

5.1.4.Требования безопасности к электрооборудованию

Безопасная эксплуатация оборудования достигается за счет квалификации персонала, безупречного выполнения правил, и норм.

Также в своевременном обучение персонала и периодическому контролю его знаний. На установках напряжением до 1000 В работы ведутся по распоряжению вышестоящего лица. На установках напряжением свыше 1000 В работы выполняются только наряд-допуску. При этом установки обслуживают не менее чем два человека одновременно.

Также при осмотре установок напряжением свыше 1000 В не разрешается приближаться к месту повреждения на расстояние ближе чем 4 м на закрытых установках и 8 м – на открытых.

Выключатель в установках напряжением свыше 1000 В, который отключился, можно включить только в том случае, если привод защищен от выключателя стенкой или металлическим щитом. При всех других обстоятельствах включать его можно только дистанционно.

Для передачи электроэнергии по территории и в производственных помещениях и питание стационарных установок (силовых и осветительных) используют бронированные кабели со свинцовой или алюминиевой оболочкой, а для питания передвижных установок и электрифицированного инструмента – гибкие кабели с резиновой оболочкой. Силовые кабели прокладывают по металлическим трубам под землей. В производственных помещениях кабели прокладывают открыто по стенам, или металлоконструкциях.

5.1.5.Защита от поражения электрическим током

Применение малых напяжений.

При выполнении некоторых видов работ возникает необходимость в переносных осветительных приборах и ручном электрифицированном инструменте. Поэтому для безопасности при пользовании переносными светильниками и электроинструментом применяют пониженное напряжение (например, 12, 36 и 42 В). В обычных условиях напряжение 42 В и ниже в соответствии с Правилами устройства электроустановок отнесятся к малым (безопасным) напряжениям.

Корпуса токоприемников малого напряжения заземлять (занулять) на следует. Но в взрывоопасных помещениях нужно заземлять или занулять все электрооборудование независимо от напряжения. Источниками малого напряжения (до 42 В) служат батареи гальванических элементов, аккумуляторы, выпрямительные и преобразовательные установки.

Хотя напряжение 42 В считается безопасным, при определенном стечении обстоятельств она может стать опасным. В этом случае необходимо во вторичной обмотке трансформатора применять провода с надежной изоляцией, а для переносных токоприемников – шланговые провода.

Состояние изоляции установок и ее контроль. Изоляция должна точно соответствовать ПУЭ, условиям окружающей среды, номинальному напряжению сети или установки. Изоляция в установках считается удовлетворительной, если ее сопротивление на участке сети между предохранителями не меньше, чем 0,5 МОм.

Как изоляционный материал используют различные диэлектрики, которые имеют сопротивление (1010 – 1022 Ом·м). Поэтому, специальными приборами измеряют сопротивление изоляции электроустановок, которая находится под рабочим напряжением, на протяжении всего времени его работы.

Двойная изоляция. Двойная изоляция – это оснащени двух независимых одной от другой степеней изоляции. При этом нарушение целостности одной изоляции не приведет к опасной ситуации, поскольку вторая изоляция предупредит появление напряжения на металлических частях оборудования. Двойная изоляция может обезопасить эксплуатацию любого оборудования небольшой мощности.

На корпус оборудования с двойной изоляцией наносится распознавательный знак – квадрат в квадрате.

Защитное заземление. Прикосновение к нетокопроводящим частям, на которые попало напряжение, может привести к таким же тяжелым последствиям, как и при непосредственном прикосновение к токопроводящим частям. Для защиты от поражения током заземляют нетокопроводящие металлические части электроустановок.

Защитное заземление – это намеренное электрическое соединение с землей или ее эквивалентом металлических, не предназначенных для прохождения тока частей, которые при повреждениях электрооборудования могут случайно оказаться под напряжением. Оно может выполняться с помощью специально сооруженных искусственных и естественных заземлителей. Заземлитель – это проводник или группа проводников, которые непосредственно соединенные с землей. Искусственные заземлители применяются лишь в тех случаях, если вблизи нет естественных или их применение невозможно.

Естественными заземлителями выступают подземные кабели, металлические конструкции, надежно соединенные с землей.

В помещениях с повышенной опасностью или в в особо опасных заземление является обязательным при напряжении установок свыше 36 В переменного тока и свыше 110 В постоянного тока, а в помещениях без повышенной опасности – при напряжении 500 В и выше. Во взрывоопасных помещениях заземления делают независимо от величины напряжения.

Допустимые значения сопротивления заземлителя определенные ПУЭ:

- 4 Ом во всех случаях для установок напряжением до 1000 В и 10 Ом при мощности генераторов и трансформаторов 100 кв·А и меньше;

- 0,5 Ом при больших токах замыкания на землю (свыше 500 А) для установок напряжением свыше 1000 В и 10 Ом при малых токах замыкания на землю.

Каждое защитное заземление периодически замеряют сопротивление специальными приборами, проверяют целостность внешних заземляющих проводников, надежность присоединения заземлителей.

Зануление. Для быстрого отключения поврежденной установки от сети используют зануление - намеренное электрическое соединение с нулевым защитным проводником металлических нетокопроводящих частей, которые могут оказаться под напряжением.

Принцип действия зануления – это преобразование замыкания на корпус в однофазное короткое замыкание для создания тока такой величины, при которой срабатывает защита и установка автоматически отключается от питательной сети. Зануление применяется в трехфазных чотырехпроводных сетях с глухозаземленой нейтралью напряжением до 1000 В. Как правило, это сети напряжением 380, 220 и 127 В.

Человек, притронувшись к поврежденному корпусу, попадет под это напряжение. Чем меньшее сопротивление нулевого провода, тем меньше напряжение, под которое попадет человек. При обрыве зануляющего или нулевого провода корпус оборудования попадает под действие фазного напряжения. Для предотвращения этого нулевой провод заземляют в нескольких местах. Контролируют зануление после монтажа и периодически в процессе эксплуатации – не реже одиного раза в пять лет.

Защитное отключение. Это – быстродействующая защита, которая обеспечивает автоматическое отключение установки при появлении в ней опасности поражения током. Защитное отключение является наиболее способом защиты конструктивных частей оборудования от появления опасного напряжения; отключают автоматическими выключателями или контакторами со специальным реле отключения. Защитное отключение может применяться на установках с изолированной и заземленной нейтралью.

5.1.6.Организационно-технические мероприятия электробезопасности

Во избежание ожогов и поражений током, необходимо прежде всего точно придерживаться правил устройства электроустановок и правил техники безопасности при эксплуатации оборудования. Кроме того, в каждом производственном помещении, с учетом местных условий, может быть целая система мероприятий безопасности при эксплуатации оборудования. Основные мероприятия:

- изоляция токопроводящих частей, которые нормально находятся под напряжением;

- малое напряжение в электрических цепях переменного тока, которое не превышает 40 В, и постоянного тока – не выше 110 В;

- элементы для защитного заземления металлических, нетокопроводящих частей, которые случайно могут попасть под напряжение (при нарушении изоляции, режима робот и т.п.);

- автоматические устройства, которые отключают электропотребителей от сети, если доступные для человеческого прикосновения части попадают под напряжение;

- защитные кожухи для предотвращения возможного случайного прикосновения к токопроводящим, подвижным или нагревательным частям электроустановок;

- блокирование против ошибочных операций и действий персонала;

- средства контроля изоляции и сигнализаци о их повреждениях, а также для отключения установки при уменьшении сопротивления изоляции ниже допустимого уровня;

- предупредительные надписи, знаки, окрашивание токопроводящих частей в сигнальные цвета и прочие средства сигнализации об опасности.

При ремонте, техническом обслуживании, эксплуатации, остановке и пуске электротехнического оборудования обслуживающий персонал может проводить работу соответственно инструкции, утвержденной главным инженером предприятия. В таком случае разрешается применять только такое электротехническое оборудование, двигатели, трансформаторы, измерительные приборы, аппараты защиты, кабели, провода и т.п., которые отвечают требованиям Госстандарта или утвержденных технических условий.

Клеммные выводы на корпусе двигателя закрывают предохранительными коробками. Корпуса двигателей надежно заземляют (зануляют). Возле выключателей, контакторов, магнитных пускателей, рубильников и других пусковых приспособлений, а также предохранителей, смонтированных на групповых щитах, должна быть надпись и указатель, к какому двигателю они принадлежат. Вручную пусковыми приспособлениями двигателей управляют в диэлектрических перчатках, а если пусковое приспособление находится в сыром месте, то, кроме диэлектрических перчаток, пользуются изолирующими подставками.

Значительное число несчастий при обслуживании рубильников случается через прикосновение к незащищенным токопроводящим частям рубильников и от возникновения электрической дуги при отключении рубильников. Для безопасности рубильники накрывают глухим кожухом без щелей для перемещения рукоятки. Рубильники устанавливают так, чтобы отключать сверху вниз, что не дает самопроизвольно включиться рубильнику под действием массы подвижных частей его привода. Для производственного оборудования применяют магнитные пускатели с утопленной кнопкой пуска для дистанционного управления токоприемниками.

Разъединителями отключают и включают электрические цепи, которые не находятся под погрузкой. Во избежание ошибочного включения или отключения разъединителей под погрузкой, которое привело бы к авариям и несчастным случаям, устанавливаются блокировки.

Для защиты электрических цепей от токов перегрузки и от короткого замыкания применяют предохранители. В зависимости от типа електропотребителя, предохранители могут быть пробковых, трубочные, пластинчатые и других видов.

Опасность от разных манипуляций с предохранителями возникает при снятии и установке их. Плавкие вставки в предохранителях любого типа следует менять при снятом напряжении. В порядке исключения допускается замена без снятия напряжения, но при обязательном отключении нагрузки и при пользовании защитными очками, диэлектрическими перчатками и ботами. При замене предохранителей трубочного типа в сети напряжением 500 В и больше, кроме вышеназванных защитных средств, необходимо применять изолирующие камеры.

Персонал производственных помещений довольно часто в процессе работы контактирует с електроосветительными оборудованием, которое в определенной степени представляет опасность поражения током. При расположении светильников ниже 2,5 м от уровня пола или рабочих площадок есть опасность прикосновения к арматуре светильника. В таком случае нужно заземлять арматуру светильников напряжением свыше 110 В, а в помещениях с повышенной опасностью и в особо опасных помещениях напряжение не должно превышать 36 В. Переносное электроосвещение также должно быть под напряжением не более чем 36 В, а при особенно неблагоприятных условиях, например при работе в металлических резервуарах, внутри барабанов, дробилок и т.д., применяется напряжение не более 12 В. Переносные лампы должны быть в безопасной арматуре, а токоподводящий провод надежно изолирован.

 




Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 493; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.056 сек.