КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод гармонической линеаризации
Идея метода гармонической линеаризации принадлежит Н.М. Крылову и Н.Н. Боголюбову и базируется на замене нелинейного элемента системы линейным звеном, параметры которого определяются при гармоническом входном воздействии из условия равенства амплитуд первых гармоник на выходе нелинейного элемента и эквивалентного ему линейного звена. Данный метод может быть использован в том случае, когда линейная часть системы является низкочастотным фильтром, т.е. отфильтровывает все возникающие на выходе нелинейного элемента гармонические составляющие, кроме первой гармоники. Коэффициенты гармонической линеаризации и эквивалентные комплексные коэффициенты передачи нелинейных элементов. В нелинейной системе (рис. 2.1) параметры линейной части и нелинейного элемента выбирают таким образом, чтобы существовали симметричные периодические колебания с частотой w. В основе метода гармонической линеаризации нелинейностей (рис. 2.10), описываемых уравнением
yн = F(x), (2.17)
лежит предположение, что на вход нелинейного элемента подается гармоническое воздействие с частотой w и амплитудой a, т.е.
x = a sin y, где y = wt, (2.18)
а из всего спектра выходного сигнала выделяется только первая гармоника yн1 = a н1 sin(y + yн1), (2.19)
где a н1 - амплитуда а yн1 - фазовый сдвиг; при этом высшие гармоники отбрасываются и устанавливается связь между первой гармоникой выходного сигнала и входным гармоническим воздействием нелинейного элемента.
Рис. 2.10. Характеристики нелинейного элемента
В случае нечувствительности нелинейной системы к высшим гармоникам нелинейный элемент может быть в первом приближении заменен некоторым элементом с эквивалентным коэффициентом передачи, который определяет первую гармонику периодических колебаний на выходе в зависимости от частоты и амплитуды синусоидальных колебаний на входе. Для нелинейных элементов с характеристикой (2.17) в результате разложения периодической функции F(x) в ряд Фурье при синусоидальных колебаниях на входе (2.18) получим выражение для первой гармоники сигнала на выходе
yн1 = b1F siny + a1F cosy, (2.20) где b1F, a1F - коэффициенты разложения в ряд Фурье, определяющие амплитуды соответственно синфазной и квадратурной составляющих первой гармоники, которые определяются по формулам:
Так как px = a w cos y, где p = d/dt,
то связь между первой гармоникой периодических колебаний на выходе нелинейного элемента и синусоидальными колебаниями на его входе можно записать в виде yн1 = [q + ] x, (2.21) где q = b1F/ a, q¢ = a1F/ a. Последнее уравнение называется уравнением гармонической линеаризации, а коэффициенты q и q¢ - коэффициентами гармонической линеаризации. Таким образом, нелинейный элемент при воздействии гармонического сигнала с точностью до высших гармоник описывается уравнением (2.21), которое является линейным. Это уравнение нелинейного элемента отличается от уравнения линейного звена тем, что его коэффициенты q и q¢ изменяются при изменении амплитуды a и частоты w колебаний на входе. Именно в этом заключается принципиальное отличие гармонической линеаризации от обычной, коэффициенты которой не зависят от входного сигнала, а определяются только видом характеристики нелинейного элемента. Для различных видов нелинейных характеристик коэффициенты гармонической линеаризации сведены в таблицу [7, 17]. В общем случае коэффициенты гармонической линеаризации q(a, w) и q¢(a, w) зависят от амплитуды a и частоты w колебаний на входе нелинейного элемента. Однако, для статических нелинейностей эти коэффициенты q(a) и q¢(a) являются функцией только амплитуды a входного гармонического сигнала, а для статических однозначных нелинейностей коэффициент q¢(a) = 0. Подвергнув уравнение (2.21) преобразованию по Лапласу при нулевых начальных условиях с последующей заменой оператора s на jw (s = jw), получим эквивалентный комплексный коэффициент передачи нелинейного элемента
WЭ(jw, a) = q + jq¢ = AЭ(w, a) e jyэ(w, a), (2.22)
где модуль и аргумент эквивалентного комплексного коэффициента передачи связаны с коэффициентами гармонической линеаризации выражениями AЭ(w, a) = mod WЭ(jw, a) = yЭ(w, a) = arg WЭ(jw, A) = arctg[q¢(a, w)/q(a, w)].
Эквивалентный комплексный коэффициент передачи нелинейного элемента позволяет определить амплитуду и фазовый сдвиг первой гармоники (2.19) на выходе нелинейного элемента при гармоническом воздействии (2.18) на его входе, т.е.
a н1 = a ´AЭ(w, a); yн1 = yЭ(w, a).
Исследование симметричных периодических режимов в нелинейных системах. При исследовании нелинейных систем на основе метода гармонической линеаризации в первую очередь решают вопрос о существовании и устойчивости периодических режимов. Если периодический режим устойчив, то в системе существуют автоколебания с частотой w0 и амплитудой a 0. Рассмотрим нелинейную систему (рис. 2.5), включающую в себя линейную часть с передаточной функцией (2.23) и нелинейный элемент с эквивалентным комплексным коэффициентом передачи WЭ(jw, a) = q(w, a) + jq¢(w, a) = AЭ(w, a) e jyэ(w, a). (2.24)
Принимая во внимание выражение (2.21), можно записать уравнение нелинейной системы {A(p) + B(p)´[q(w, a) + ]}x = 0. (2.25) Если в замкнутой нелинейной системе возникают автоколебания
x = a 0 sin w0t
с постоянной амплитудой и частотой, то коэффициенты гармонической линеаризации оказываются постоянными, а вся система стационарной. Для оценки возможности возникновения автоколебаний в нелинейной системе методом гармонической линеаризации необходимо найти условия границы устойчивости, как это делалась при анализе устойчивости линейных систем. Периодическое решение существует, если при a = a 0 и w = w0 характеристическое уравнение гармонически линеаризованной системы A(p) + B(p)´[q(w, a) + ] = 0 (2.26) имеет пару мнимых корней li = jw0 и li+1 = -jw0. Устойчивость решения необходимо оценить дополнительно. В зависимости от методов решения характеристического уравнения различают методы исследования нелинейных систем. Аналитический метод. Для оценки возможности возникновения в нелинейной системе автоколебаний в гармонически линеаризованный характеристический полином системы вместо p подставляют jw
D(jw, a) = A(jw) + B(jw)´[q(w, a) + jq¢(w, a)]. (2.27)
В результате получают уравнение D(jw, a) = 0, коэффициенты которого зависят от амплитуды и частоты предполагаемого автоколебательного режима. Выделив вещественную и мнимую части
Re D(jw, a) = X(w, a); Im D(jw, a) = Y(w, a), получим уравнение X(w, a) + jY(w, a) = 0. (2.28)
Если при действительных значениях a 0 и w0 выражение (2.28) удовлетворяется, то в системе возможен автоколебательный режим, параметры которого рассчитываются по следующей системе уравнений: (2.29)
Из выражений (2.29) можно найти зависимость амплитуды и частоты автоколебаний от параметров системы, например, от коэффициента передачи k линейной части системы. Для этого необходимо в уравнениях (2.29) коэффициент передачи k считать переменной величиной, т.е. эти уравнения записать в виде: (2.30)
По графикам a 0 = f(k), w0 = f(k) можно выбрать коэффициент передачи k, при котором амплитуда и частота возможных автоколебаний имеет допустимые значения или вообще отсутствует. Частотный метод. В соответствии с критерием устойчивости Найквиста незатухающие колебания в линейной системе возникают в том случае, когда амплитудно-фазовая характеристика разомкнутой системы проходит через точку с координатами [-1, j0]. Данное условие является также условием существования автоколебаний в гармонически линеаризованный нелинейной системе, т.е.
Wн(jw, a) = -1. (2.31)
Так как линейная и нелинейная части системы соединены последовательно, то частотная характеристика разомкнутой нелинейной системы имеет вид Wн(jw, a) = Wлч(jw)´WЭ(jw, a). (2.32)
Тогда в случае статической характеристики нелинейного элемента условие (2.31) принимает вид Wлч(jw) = -. (2.33) Решение уравнения (2.33) относительно частоты и амплитуды автоколебаний можно получить графически как точку пересечения годографа частотной характеристики линейной части системы Wлч(jw) и годографа обратной характеристики нелинейной части , взятой с обратным знаком (рис. 2.11). Если эти годографы не пересекаются, то режим автоколебаний в исследуемой системе не существует.
Рис. 2.11. Годографы линейной и нелинейной частей системы
Для устойчивости автоколебательного режима с частотой w0 и амплитудой a 0 требуется, чтобы точка на годографе нелинейной части -, соответствующая увеличенной амплитуде a 0+D a по сравнению со значением в точке пересечения годографов, не охватывалась годографом частотной характеристики линейной части системы и охватывалась точка, соответствующая уменьшенной амплитуде a 0-D a. На рис. 2.11 дан пример расположения годографов для случая, когда в нелинейной системе существуют устойчивые автоколебания, так как a 3 < a 0 < a 4 . Исследование по логарифмическим частотным характеристикам. При исследовании нелинейных систем по логарифмическим частотным характеристикам условие (2.31) переписывают отдельно для модуля и аргумента эквивалентного комплексного коэффициента передачи разомкнутой нелинейной системы
mod Wлч(jw)Wэ(jw, a) = 1; arg Wлч(jw)Wэ(jw, a) = - (2k+1)p, при k=0, 1, 2,...
с последующим переходом к логарифмическим амплитудной и фазовой характеристикам
Lлч(w) + Lэ(w, a) = 0; (2.34) yлч(w) + yэ(w, a) = - (2k+1)p, при k=0, 1, 2,... (2.35)
Условия (2.34) и (2.35) позволяют определить амплитуду a 0 и частоту w0 периодического решения уравнения (2.25) по логарифмическим характеристикам линейной части системы Lлч(w), yлч(w) и нелинейного элемента Lэ(w, a), yэ(w, a). Автоколебания с частотой w0 и амплитудой a 0 будут существовать в нелинейной системе, если периодическое решение уравнения (2.25) устойчиво. Приближенный метод исследования устойчивости периодического решения заключается в том, что исследуется поведение системы при частоте w = w0 и значениях амплитуды a = a 0 + D a и a = a 0 - D a, где D a > 0 - малое приращение амплитуды. При исследовании устойчивости периодического решения при a 0 + D a и a 0 - D a по логарифмическим характеристикам пользуются критерием устойчивости Найквиста. В нелинейных системах с однозначными статическими характеристиками нелинейного элемента коэффициент гармонической линеаризации q¢(a) равен нулю, а следовательно, равен нулю и фазовый сдвиг yэ(a), вносимый элементом. В этом случае периодическое решение уравнения системы [A(p) + B(p)´q(a)]x = 0 (2.36)
существует, если выполняются условия:
Lлч(w) = - Lэ(a); (2.37) yлч(w) = - (2k+1)p, при k=0, 1, 2,... (2.38)
Уравнение (2.38) позволяет определить частоту w = w0 периодического решения, а уравнение (2.37) - его амплитуду a = a 0. При сравнительно простой линейной части решения этих уравнений могут быть получены аналитически. Однако в большинстве случаев их целесообразно решать графически (рис. 2.12). При исследовании устойчивости периодического решения уравнения (2.36), т.е. при определении существования автоколебаний в нелинейной системе с однозначной нелинейной статической характеристикой пользуются критерием Найквиста [15]: периодическое решение с частотой w = w0 и амплитудой a = a 0 устойчиво, если при изменении частоты от нуля до бесконечности и положительном приращении амплитуды D a > 0 разность между числом положительных (сверху вниз) и отрицательных (снизу вверх) переходов фазовой характеристики линейной части системы yлч(w) через линию -p равна нулю в диапазоне частот, где Lлч(w)³-Lэ(w0, a 0+D a), и не равна нулю в диапазоне частот, где Lлч(w)³-Lэ(w0, a 0-D a). На рис. 2.12 показан пример определения периодических решений в нелинейной системе с ограничением. В такой системе имеются три периодических решения с частотами w01, w02 и w03, определяемыми в точках пересечения фазовой характеристики yлч(w) с линией -1800. Амплитуды периодического решения a 01, a 02 и a 03 определяются из условия (2.37) по логарифмическим амплитудным характеристикам нелинейного элемента -Lэ(w01, a), -Lэ(w02, a) и -Lэ(w03, a).
Рис. 2.12. Логарифмические амплитудные и фазовая характеристики
Из трех решений, определенных на рис. 2.12, устойчивы два. Решение с частотой w = w01 и амплитудой a = a 01 устойчиво, так как в диапазоне частот 1, где Lлч(w)³-Lэ(w01, a 01+D a), фазовая характеристика yлч(w) не пересекает линию -1800, а в диапазоне частот 2, где Lлч(w)³-Lэ(w01, a 01-D a), фазовая характеристика yлч(w) один раз пересекает линию -1800. Решение с частотой w = w02 и амплитудой a = a 02 неустойчиво, так как в диапазоне частот, где Lлч(w)³-Lэ(w02, a 02+D a), фазовая характеристика yлч(w) один раз пересекает линию -1800. Высокочастотное периодическое решение с частотой w = w03 и амплитудой a = a 03 устойчиво, так как в диапазоне частот, где Lлч(w)³-Lэ(w03, a 03+D a), имеется один положительный и один отрицательный переход фазовой характеристики yлч(w) через линию -1800, а в диапазоне частот, где Lлч(w)³-Lэ(w03, a 03-D a), имеются два положительных и один отрицательный переход фазовой характеристики yлч(w) через линию -1800. В рассмотренной системе при малых по величине возмущениях установятся высокочастотные автоколебания с частотой w03 и амплитудой a 03, а при больших по величине возмущениях - низкочастотные автоколебания с частотой w01 и амплитудой a 01.
Пример. Исследовать автоколебательные режимы в нелинейной системе, линейная часть которой имеет следующую передаточную функцию , где k=200 c-1; T1=1.5 c; T2=0.015 c, а в качестве нелинейного элемента используется реле с зоной нечувствительности (рис. 2.4,б) при с=10 В, b=2 В. Р е ш е н и е. По таблице [7] для реле с зоной нечувствительности находим коэффициенты гармонической линеаризации: при a ³ b, q¢(a) = 0. При построении характеристик нелинейного элемента целесообразно использовать относительное по сравнению с зоной нечувствительности значение амплитуды входного гармонического воздействия m = a /b. Перепишем выражение коэффициента гармонической линеаризации в виде . Откуда , где - коэффициент передачи реле; - относительная амплитуда. Коэффициент передачи реле kн отнесем к линейной части системы и получим нормированные коэффициенты гармонической линеаризации , q¢(m) = 0 и нормированную логарифмическую амплитудную характеристику релейного элемента с обратным знаком Если m ® 1, то -Lэ(m) ® ¥; а при m >> 1 -Lэ(m) = 20 lg m. Таким образом, асимптотами нормированной логарифмической амплитудной характеристики с обратным знаком являются вертикальная прямая и прямая с наклоном +20дб/дек, которые проходят через точку с координатами L = 0, m = 1 (рис. 2.13).
Рис. 2.13. Определение периодического решения в релейной системе с зоной нечувствительности Для решения вопроса о существовании автоколебаний в соответствии с нормированной логарифмической амплитудной характеристикой с обратным знаком нелинейного элемента и передаточной функцией линейной части системы на рис. 2.13 построены логарифмические характеристики Lлч(w), -Lэ(m) и yлч(w). Частота периодического решения w0 = 4.3 c-1 определяется в точке пересечения фазовой характеристики yлч(w) и линии -1800. Амплитуды периодических решений m1 = 29 и m2 = 1.08 находятся по характеристикам Lлч(w) и -Lэ(m). Периодическое решение с малой амплитудой m2 неустойчиво, а периодическое решение с большой амплитудой m1 устойчиво. Таким образом, в исследуемой релейной системе существует автоколебательный режим с частотой w0 = 4.3 c-1 и амплитудой a 0= b´m1 = = 58 В.
Для решения вопроса о существовании автоколебаний в соответствии с нормированной логарифмической амплитудной характеристикой с обратным знаком нелинейного элемента и передаточной функцией линейной части системы на рис. 2.13 построены логарифмические характеристики Lлч(w), -Lэ(m) и yлч(w). Частота периодического решения w0 = 4.3 c-1 определяется в точке пересечения фазовой характеристики yлч(w) и линии -1800. Амплитуды периодических решений m1 = 29 и m2 = 1.08 находятся по характеристикам Lлч(w) и -Lэ(m). Периодическое решение с малой амплитудой m2 неустойчиво, а периодическое решение с большой амплитудой m1 устойчиво. Таким образом, в исследуемой релейной системе существует автоколебательный режим с частотой w0 = 4.3 c-1 и амплитудой a 0= b´m1 = = 58 В.
Дата добавления: 2014-01-15; Просмотров: 702; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |