Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тепловое расширение

Для численной характеристики такого явления используют температурный коэффициент ли­нейного расширения (ТКЛР), который показывает, на какую до­лю первоначальной длины расширяется материал при повыше­нии температуры на 1 °С.

Значения ТКЛР составляют, °С-1: для бетона (10... 12)•10-6, стали 10•10-6, древесины вдоль волокон - (3...5)•10-6. ТКЛР полимерных строительных материалов в 10...20 раз больше.

• Огнестойкость - свойство материала выдерживать без раз­рушения воздействие высоких температур, пламени и воды в условиях пожара. Материал в таких условиях либо сгорает, либо растрескивается, сильно деформируется, разрушается от потери прочности. По огнестойкости различают материалы несгорае­мые, трудносгораемые и сгораемые.

Несгораемые материалы в условиях высоких температур не подвержены воспламенению, тлению или обугливанию. Они не горят и не поддерживают горение. Это кирпич, бетон и др. Однако некоторые несгораемые материалы -мрамор, стекло, асбестоцемент - при резком нагревании разру­шаются, а стальные конструкции сильно деформируются и те­ряют прочность.

Трудносгораемые материалы под воздействием огня или вы­сокой температуры медленно воспламеняются, но после удале­ния источника огня их тление или горение прекращается. К та­ким материалам относятся фибролит, асфальтобетон, пропитан­ная антипиренами древесина.

Сгораемые материалы под воздействием огня или высокой температуры горят и продолжают гореть после удаления источ­ника огня. Это - древесина, обои, битуминозные кровельные и полимерные материалы и др.

Предел огнестойкости - это промежуток времени (минуты или часы) от начала возгорания до возникновения в конструкции предельного состояния. Предельным состоянием считают поте­рю несущей способности, т. е. обрушение конструкции; возник­новение в ней сквозных трещин, через которые на противопо­ложную поверхность могут проникать продукты горения и пла­мя; недопустимый нагрев поверхности, противоположной действию огня, который может вызвать самопроизвольное воз­горание других частей сооружения.

• Огнеупорность - свойство материала выдерживать длитель­ное воздействие высокой температуры (от 1580 °С и выше), не деформируясь и не размягчаясь.

Акустические свойства материалов.

Строителя интересуют две стороны взаимодействия звука и материала: в какой степени материал проводит сквозь свою толщу звук — звукопроводность и в какой мере материал поглощает и отра­жает падающий на него звук — звукопоглощение.

Звукопроводность зависит от массы материала и его строения. Материал тем меньше проводит звук, чем больше его масса; если масса материала велика, то энергии звуковых волн не хватает, чтобы пройти сквозь него, так как для этого надо заставить материал колебаться, плохо проводят звук пористые и волокнистые материалы, так как звуковая энергия поглощается и рассеивается развитой поверхно­стью материала, переходя при этом в тепловую энергию.

Звукопоглощение зависит от характера поверхности материала. Материалы с гладкой поверхностью отражают большую часть падаю­щего на них звука (эффект зеркала), поэтому в помещении с гладкими стенами звук, многократно отражаясь от них, создает постоянный шум. Если же поверхность материала имеет открытую пористость, то звуковые колебания, входя в поры, поглощаются материалом, а не от­ражаются. Так, мягкая мебель, ковры заглушают звук.

Способность отражать звуковые волны важна для наружных ограждений зданий. В этом случае для повышения отражения воздушных звуковых волн применяют массивные конструкции с гладкой наружной поверхностью.

Для внутренних помещений высокая отражающая способность ограждения (перегородок) недостаточна, так как отражен­ные звуковые волны будут усиливать шум в наиболее шумном помещении. В данном случае применяют многослойные конст­рукции, в состав которых входят элементы из звукоизоляционных материалов, эффективность которых оценивается динами­ческим модулем упругости. В качестве звукоизоляционных про­кладок применяют пористо-волокнистые материалы из мине­ральной или стеклянной ваты, древесных волокон (древесно­волокнистые плиты), засыпки из пористых зерен (керамзита, шлака и др.).

1.4.2.МЕХАНИЧЕСКИЕ СВОЙСТВА.

Пр очностные свойства (прочность, твердость, истирае­мость, сопротивлением удару, износу).

Д еформационными свойства (упругость, пластичность, хрупкость и ползучесть).

Изменение формы и размеров тела под действием внешних сил называется деформацией. При этом твердые тела по-разному реагируют на снятие нагрузки, прояв­ляя свойства упругости или пластичности.

Деформационные свойства Главнейшие виды деформаций — растяжение, сжатие, сдвиг, кручение и изгиб.

Все они могут быть обратимыми и необратимы­ми.

Деформации могут быть также сложными — упруго-пластическими или упруго-вязко-пластическими, если достаточно четко вы­ражены соответственно упругая и пластическая или упругая, эласти­ческая и пластическая части. На характер и величину деформации влияют не только величина механического нагружения, но и скорость приложения этой нагруз­ки, а также температура материала. Как правило, с повышением скорости нагружения, а следовательно, деформирования, а также с понижением температуры материала деформации по своему харак­теру приближаются к упругим и упруго-пластическим, уменьшаясь по своей абсолютной величине.

• Упругость

Модуль уп­ругости (модуль Юнга) характеризует меру жесткости материала, т.е. его способность сопротивляться упругому изменению формы и размеров при приложении к нему внешних сил. Модуль упругости Е (МПа) вычисляется из закона Гука:

Е=σ/ε

где — σ напряжение, МПа; ε — относительная деформация.

Чем выше модуль упругости, тем меньше материал деформируется. Так, модуль упругости каучука 10...20 МПа, а стали - 200 000 МПа это значит, что под действием одной и той же силы деформация стали будет в 10 000 раз меньше, чем каучука при прочих равных условиях.

<== предыдущая лекция | следующая лекция ==>
Влажность | Хрупкость
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 404; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.