Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Физико-химические свойства. Токсичность




Иприты

Аддукты ДНК и РНК

Ингибиторы синтеза белка и клеточного деления, образующие

Ингибиторы синтеза белка и клеточного деления

Процессы синтеза белка и клеточного деления необыкновенно сложны. Механизмы, посредством которых токсиканты способны воздействовать на них — многообразны (см. 5.2. «Общие механизмы цитотоксичности»). При этом условно вещества, нарушающие процессы, можно подразделить на две группы. Представители первой группы взаимодействуют с нуклеиновыми кислотами ядра клетки (образуют аддукты), повреждая ее генетический код и нарушая механизмы репликации. Поражение такими веществами сопровождается повреждением преимущественно делящихся клеток, нарушением пролиферации клеточных элементов. Соединения другой группы действуют на этапах транскрипции и трансляции генетической информации. Поэтому основным видом нарушения является угнетение синтеза белка. Наиболее чувствительными к этим ядам являются органы с высокой интенсивностью пластического обмена.

 

К числу веществ рассматриваемой группы относятся яды, образующие при интоксикациях прочные ковалентные связи с азотистыми основаниями нуклеиновых кислот. Среди ОВТВ — это прежде всего сернистый и азотистый иприты и их аналоги. При изучении нуклеиновых кислот, выделяемых из поврежденных этими токсикантами клеток, в пробах выявляются комплексы остатка молекулы токсиканта и пуриновых (пиримидиновых) оснований. Такие комплексы получили название аддуктов. При взаимодействии с нуклеиновыми кислотами ипритов (сернистого, азотистого) и их аналогов образуются аддукты, содержащие алкильные радикалы (фрагменты молекулы яда, представляющие собой алкильную группу). По этой причине вещества называют также алкилирующими агентами. Помимо нуклеиновых кислот алкилирующие агенты способны взаимодействовать с белками, пептидами и молекулами иного строения. В этой связи механизм их токсического действия сложен и не ограничивается повреждением только генетического аппарата клеток.

 

Один из первых представителей галогенированных тиоэфиров, 2,2-дих-лордиэтилсульфид, был впервые синтезирован в 1822 г. Депре. В чистом виде соединение было выделено и изучено в 1886 г. Виктором Мейером в Геттингене. Им же дано и первое описание некоторых сторон пагубного действия этого вещества на человека и животных, выявившегося в процессе работы с соединением. Опыты проводились при непосредственном участии практиканта русского химика Н. Д. Зелинского, который получил сильное поражение токсикантом, что послужило поводом для более детального изучения его токсических свойств.

В ходе Первой мировой войны, в июле 1917 г. возле города Ипр английские войска были обстреляны немецкими минами, содержащими 2,2-дихлордиэтилсульфид. ОВ, названное «ипритом», заражало местность, быстро проникало через одежду, вызывало поражение кожи. Так в историю войны вошел еще один тип отравляющих веществ, получивших название ОВ «кожно-нарывного действия». Позже ОВ использовали итальянцы в ходе итало-абиссинской войны (1936 г.). Во время Второй мировой войны (1943) его применяла в Китае японская армия. В 80-е гг. XX в. вещество вновь использовалось в качестве ОВ в ходе Ирако-Иран-ского военного конфликта. Из изученных галогенированных тиоэфиров иприт является самым токсичным агентом.

В 1934—35 гг. Уорд исследовал хлорированные этиламины и среди третичных производных этого ряда обнаружил новый вид веществ, вызывающих воспалительные процессы в коже. В результате исследований были получены данные, указывающие на возможность создания на основе органических соединений азота новой группы ОВ. Во время Второй мировой войны в Германии третичные хлорэтиламины синтезировали в производственном масштабе и сохраняли в автоцистернах, предполагая использовать для заражения местности. Обнаруженные в 1945 г. в Германии запасы 2,2,2-трихлортриэтиламина составляли около 2000 тонн. Из-за сходства молекулярной структуры трихлортриэтиламина с ипритом (рис. 35) и аналогичного физиологического действия вещество получило название «азотистый иприт».

 

 

Рис. 35. Структуры сернистого и азотистого ипритов

Позже были изучены и аналоги азотистого иприта: метил-дихлорэти-ламин, этил-дихлорэтиламин и т. д. Эти соединения обладали токсичностью близкой токсичности исходного вещества. В качестве ОВ в ходе боевых действий трихлорэтиламин и его аналоги не использовались.

В соответствии с Конвенцией о запрещении химического оружия (1993) запасы сернистого и азотистого иприта странами, имеющими веще¬ства на снабжении армий, должны быть уничтожены. Однако опасность поражения людей этими соединениями или их аналогами сохраняется. Так, на основе хлорэтиламинов созданы высокоэффективные цитостатики — лекарственные препараты, применяемые для лечения опухолей (циклофосфамид, мехлорэтамин, хлорамбуцил, мелфалан) и других форм патологии. В настоящее время эти вещества производятся в большом количестве и достаточно широко применяются в клинической практике. Многочисленные серо-, азот- и кислородсодержащие органические соединения с близким механизмом токсического действия широко используют в промышленности (этиленимин, этиленоксид и т. д.). Широкое применение алкилирующих агентов в хозяйственной деятельности, их доступность делают возможным применение веществ с террористическими целями.

Поскольку свойства, биологическая активность сернистого и азотистого ипритов и их аналогов во многом совпадают, токсикологическую характеристику веществ целесообразно представить на примере табельного ОВ — сернистого иприта, с указанием особенностей свойств наиболее токсичного представителя галогеналкиламинов — азотистого иприта.

 

Основные свойства сернистого и азотистого ипритов представлены в табл. 32 и 33.




Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 776; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.