Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод резолюций

 

Методику продемонстрируем на примере. Пусть требуется доказать:

.

Сначала поступают точно так же, как и по методике Вонга, только необходимо преобразовать клаузу таким образом, чтобы слева от символа Þ был ноль Æ:

Затем из дизъюнктов составляют резолюции до тех пор, пока не получится ноль.

Выпишем по порядку все посылки и далее начнем их «склеивать». Дизъюнкты можно перебирать автоматически в соответствии с возрастанием порядковых номеров. Такая стратегия поиска нуля очень непродуктивна. К решению данной задачи можно подойти творчески.

В итоге получим:

1. АÚ В 5. (1; 4)
2. СÚ А 6. (2; 4) С
3. 7. (3; 5)
4. 8. (6; 7) Æ

Иначе, произведенные раннее преобразования, можно представить в следующем виде:

 

Пример: Доказать истинность заключения

(AÚB); (A«B);

(A&B).

1) (AÚB) - посылка;

2) (A«B)=(ùAÚB)&(ùBÚA) - посылка;

3)ù(A&B)=(ùAÚùB) –отрицание заключения;

4) K = {(AÚB); (ùAÚB); (ùBÚA); (ùAÚùB)};

5) (ùAÚùB)Ú(ùAÚB)= ùA - резольвента;

6) ùAÚ(AÚB)=B - резольвента;

7) BÚ(ùBÚA)=A - резольвента;

8) AÚùA= ÿ - пустая резольвента.

ùA

 

 

Достоинством принципа резолюции является то, что при доказательстве истинности заключения применяют только одно правило: поиск и удаление контрарных литер на множестве дизъюнктов до получения пустой резольвенты.

Алгоритм резолюции основан на том, что выводимость формулы В из множества посылок F1; F2; F3;... Fn равносильна доказательству теоремы

|¾(F1&F2&F3&...&Fn®B),

формулу которой можно преобразовать так:

|¾(F1&F2&F3&...&Fn®B) =

|¾(ù(F1&F2&F3&...&Fn)ÚB) =

|¾ù(F1&F2&F3&...&Fn&(ù B)).

Следовательно, заключение В истинно тогда и только тогда, когда формула (F1&F2&F3&...&Fn&(ùB))=л. Это возможно при значении “л” хотя бы одной из подформул Fi илиùB.

Для анализа этой формулы все подформулы Fi иùB должны быть приведены в конъюнктивную нормальную форму и сформировано множество дизъюнктов, на которые распадаются все подформулы. Два дизъюнкта этого множества, содержащие пропозициональные переменные с противоположными знаками (контрарные атомы) формируют третий дизъюнкт - резольвенту, в которой будут исключены контрарные пропозициональные переменные. Неоднократно применяя это правило к множеству дизъюнктов и резольвент, стремятся получить пустой дизъюнкт. Наличие пустого дизъюнкта свидетельствует о выполнении условия F1&F2&F3&...&Fn&ùB=л.

 

 

<== предыдущая лекция | следующая лекция ==>
Метод Вонга | Опорядження деревини плівковими матеріалами
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 369; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.