КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Симплексный метод
Выше были рассмотрены основные теоремы ЛП. Из них следует, что если ЗЛП имеет оптимальное решение, то оно соответствует хотя бы одной точке многогранника решений и совпадает хотя бы с одним из допустимых базисных решений системы ограничений. Там же мы рассмотрели, что путем решения любой ЗЛП является перебор конечного числа допустимых базисных решений системы ограничений и выбор среди них того, на котором функция цели принимает оптимальное значение. Геометрически надо перебрать все угловые точки многогранника решений. Трудно осуществить, т.к. для реальных задач число ДБР хоть и конечно, но м.б. велико. Число перебираемых ДБР можно сократить, если производить перебор не беспорядочно, а с учетом изменений линейной функции, т.е. добиваясь, чтобы каждое следующее решение было «лучше» (или, по крайней мере, «не хуже») предыдущего по значению целевой функции. Предположим, точка А – исходное ДБР (допустимое базисное решение). Из чертежа видно, что от А выгодно перейти к В, а потом к С. Идея последовательного улучшения решения легла в основу универсального метода решения ЗЛП – симплексного метода. Впервые был предложен амер. ученым Дж. Данцигом в 1949 г., хотя идеи метода были разработаны Л. В. Канторовичем в 1939 году. Метод используется для компьютерных расчетов. Для реализации метода необходимо освоить три основных элемента: § способ определения первоначального ДБР задачи; § правило перехода к лучшему (не худшему) решению; § критерий проверки оптимальности найденного решения. Для использования симплексного метода ЗЛП д.б. приведена к каноническому виду, т.е. система ограничений – в виде уравнений.
Дата добавления: 2014-01-15; Просмотров: 367; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |