КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Расчет цепей с зависимыми источниками
Для расчета цепей, содержащихзависимые источники, применимы все методы, известные для расчета цепей с независимыми источниками. Наиболее часто используются методы узловых напряжений и контурных токов. Пример 1. В цепи (рисунок 4.6) действуют независимый источник тока J и ИНУТ с ЭДС Е =rI2. Дано: R1, R2, r, J. Найти напряжение Uab. Рисунок 4.6 Рисунок 4.7
Решение. Выберем для решения метод контурных токов. Контурное уравнение: I11 (R1+R2)+J R2=E.Учитывая, что I2=I11+J, I11 (R1+R2)+J R2=r(I11+J) или I11(R1+R2 - r)= J (r - R2). Из этого уравнения определим ток I11. Напряжение Uab = I2 R2. Пример 2. В цепи (рис.4.7) действуют независимые источник напряжения с ЭДС E1 и ИНУН с ЭДС E2=k Uab. Найти токи в ветвях, если даны R1,R2,R3, k. Решение. Для решения выберем метод узловых потенциалов. Приняв φb = 0, запишем уравнение для узла α φα (1 / R1+1 / R2+1 / R3) = E1 / R1+E2 / R2. Учитывая, что Uab = φa-φb, E2=kφа имеем φα (1 / R1+1 / R2+1 / R3) = E1 / R1+ kφа / R2. Решая уравнение, получим φa= Uab. Токи в ветвях I1= (Uab+E1)/ R1; I2=(Uab- E2) / R2, I3= Uab / R3.
Дата добавления: 2014-01-15; Просмотров: 1292; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |