Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Густота сети отбора проб при гидрогеохимических поисках




 

Масштаб поисков Количество водных проб на 1 км*
1: 200 000 1: 100 000 1: 50 000 1: 25 000 0,09—0,2 0,3—0,6 0,7—1,6 1,8—3,6

 

В полевых условиях на месте отбора пробы с помощью переносных портативных гидрогеохимических лабораторий определяются содержания микрокомпонентов (SO4, HCO3, Cl, Ca, Mg и др.). щелочи, сумма металлов (Pb, Zn, Си и др.) и рН воды. В лабораторных условиях производится дополнительный химический анализ проб, получение сухого остатка для спектрального анализа. Обработка результатов гидрогеохимических исследований заклю­чается в составлении гидрогеохимических карт.

Почвенный гидрохимический метод заключается в определении химических элементов в водных вытяжках из почв. Для этого пробы отбираются из почвы с глубины 20—30 см массой 200—300 г.

 

Атмогеохимический метод поисков основан на выявлении газовых аномалий родона, гелия, торона, углеводородов в почве, надпочвенном воздухе и в подземных выработках. Он применяется при поисках нефти, газа, ископаемых углей, ртути (газовый метод) и радиоактивных руд (эманационный метод). Достоинствами метода являются определенность связей газовых выделений или радиоактивных эманации с их источником и возможность применения этого метода в закрытых районах, при значительной мощности дальнеприносных отложений, на каменистых склонах и осыпях. Отбор проб почвенного воздуха производится специальным зондом с глубины 0,5—1 м или в скважинах при помощи пробоотборников. Газовые пробы хранятся в герметически закрытых сосудах. При эманационной съемке пробы анализируются на месте отбора эманометрами (ЭМ-6П). Пробы летучих углеводородов иссле­дуются в полевых условиях и в лабораториях. Данные опробования выносятся на геологические или специальные поисковые карты, например, карты эманационной съемки (рис. 19)

 

Рис. 19. Карта эманационной съемки

Интенсивность в эманах: 1 — до 10, 2 — от 10 до 20, 3 — от 20 до 40, 4— от 40 до 60, 5 — от 60 до 80, 6 — от 80 до 100

 

Биогеохимический метод поисков основан на выявлении вторичных ореолов рассеяния в растениях. Основным достоинством биогеохимического метода является его глубинность — т. е. возможность обнаружения рудных тел, перекрытых наносами мощностью до 30 м. Метод может применяться при поисках полезных ископаемых в пустынных, лесистых, заболоченных районах, в областях недавнего оледенения.

 

При постановке производственных биогеохимических исследований особое значение имеет выбор растений для опробования. Для новых районов комплекс растений устанавливается опытными методическими работами; для районов известных — по аналогии с ранее проведенными исследованиями. При этом должно быть выяснено, какие части растений — корни, ветви, листья — являются концентраторами элементов-индикаторов.

С целью получения наиболее надежных результатов на каждом пункте опробования отбираются пробы растений двух-трех видов. Масса пробы определяется в зависимости от применяемых аналитических методов.

 

Подготовка биогеохимических проб к анализу заключается в сжигании растений в герметических печах при минимальной температуре во избежание потерь легколетучих элементов. Анализ золы растений производится спектральными или химическими методами. Результаты анализов представляются в виде графиков в случае, если исследования проводились по отдельным разобщенным профилям (рис. 20). Поисковое значение имеет не только абсолютная величина содержаний тех или иных элементов, но и величина их отношений. Например, на одном из месторождений редкометальных пегматитов соотношение бериллия к литию в золе изменялось по мере приближения к рудному телу от 1: 12 до 1: 50. При площадных исследованиях данные анализов выносятся на геологическую карту, на которой выделяются биогеохимические аномалии. В отдельных случаях для поисков нефти используется присутствие в ней бактерий, окисляющих углеводороды. Этот пока еще мало распространенный метод называется бактериальным.

 

 

Рис. 20. Биогеохимический профиль через полиметаллическое месторождение (по Л. И. Грабовской).

1 — песчано-глинистые сланцы и роговики; 2 — осветленные песчано-глинистые сланцы; 3 — песчаники и конгломераты; 4 — гранит-порфиры; 5 — лампрофиры; 6 — аллювий; 7 — оруденелая тектоническая зона; 8 — пункты опробования березы; 9 — содержание свинца в листьях; 10 — содержание свинца в ветвях

 

Геоботанический метод поисков основан на использовании растений-индикаторов, произрастающих на почвах, обогащенных соответствующими химическими элементами. Так, галмейная фиалка и галмейная ярутка растут на почвах с повышенным содержанием цинка, что может указывать на наличие в непосредственной близости повышенных концентраций цинка и, следовательно, на возможность обнаружения цинковых рудопроявлений в минеральных формах. Среди растений-индикаторов известны представители «медной» флоры — качим, «никелевой» — грудница татарская, грудница мохнатая, анемон. Кроме того, некоторые элементы (уран, молибден, бор) вызывают характерные заболевания и морфологические изменения растений, что может служить дополнительным признаком при геоботанических поисках.

 

Геофизические методы поисков основаны на изучении физических свойств горных пород и полезных ископаемых.

Эти методы имеют большое значение для поисков месторождений, перекрытых мощными рыхлыми отложениями и залегающих на больших глубинах. Наибольшей эффективности геофизические методы достигли при поисках месторождений нефти и газа, радиоактивных и железных руд, угля, колчеданных руд и подземных вод.

 

Магнитометрический метод заключается в определении магнитного поля на поисковом участке. По способности к намагничиванию — магнитной восприимчивости (א) —. все вещества делятся на диамагнитные (א < 0) и парамагнитные (א > 0). Вещества с высокой магнитной восприимчивостью называются ферромагнитными. Диамагнитными свойствами обладают кварц, кальцит, барит, флюорит, соль, гипс, ангидрит, мрамор. К парамагнитным относятся породы, содержащие в своем составе магнетит, титаномагнетит, гематит, пирротин.

Для производства магнитных измерений разработана высококачественная отечественная аппаратура — наземные магнитометры — М-18, М-20, М-23, М-27; аэромагнитометры — АСГ-48, АММ-13, АЯАМ-6 и др.

При поисках месторождений магнитных железных руд, цветных и редких металлов, приуроченных к зонам разломов и контактам интрузивных пород, и для выявления складчатых структур, перспективных для поисков месторождений нефти и газа, применяется аэромагнитная съемка.

При производстве магнитной съемки с самолета обязательно предусматривается некоторый объем наземных детализационных работ. В задачу последних при поисках рудных месторождений входят изучение структурной обстановки, прослеживание отдельных массивов, даек, жил, разрывных нарушений и других структурных элементов, контролирующих оруденение. Особую помощь детальные магнитометрические работы могут оказать при поисках россыпных месторождений рутила, циркона, монацита, золота, платины, если в них имеются ферромагнитные минералы. Наиболее благоприятными являются россыпи, залегающие на плотике, представленном немагнитными породами.

 

На рис. 21 приведен график, показывающий характер изменения вертикальной составляющей напряженности магнитного поля над сульфидными медно-никелевыми рудами. Повышенная магнитность рудного тела объясняется наличием в руде пирротина, обладающего ферромагнитными свойствами.

 

 

Рис. 21. Поиски медно-никелевого рудного тела магнитным методом в Сёдбери (по Гельбрайту),

1 — ледниковые моренные отложения; 2 — нориты; 3 - рудное тело; 4 – подстилающие метаморфические породы

 

 

Радиометрический метод является ведущим для поисков радиоактивных руд и оказывает существенную помощь в решении общих вопросов геологического строения и поисков месторождений других полезных ископаемых. Метод основан на определении радиоактивности природных оортзований. Под радиоактивностью понимается свойство ядер атомов приходить в относительно устойчивое энергетическое состояние с выделением элементарных частиц. Такой процесс, происходящий в элементах самопроизвольно, вызывает естественную радиоактивность, а под воздействием, внешних возбудителей, например нейтронов, — искусственную, или наведенную, радиоактивность. В геологической практике широко применяются методы измерения естественной и искусственной радиоактивности.

Известно более 230 радиоактивных изотопов элементов. К ним относится изотопы таких тяжелых элементов, как уран, радий, торий, актиний, и ряда легких элементов — калия, рубидия, рения, индия, олова, теллура. Радиоактивность пород выражается в альфа,- бета- и гамма-излучении.

 

Наиболее широкое распространение получили методы поисков, основанные на измерении гамма- и бета-излучения. Существуют следующие модификации этого метода: аэрогамма-съемка (измерения "ведутся станцией АСГ-48), автогамма-съемка и пешеходные гамма- и гамма-бета-съемки (измерения ведутся полевыми радиометрами РА-69 и СРП-2 «Кристалл»). Широко распространен эманационный метод поисков радиоактивных руд.

 

Аэрогамма-съемка применяется для непосредственных поисков месторождений радиоактивных элементов и оценки радиоактивности пород на значительных площадях. Основное преимущество этого способа заключается в его высокой производительности, экономичности и эффективности в обнаружении крупных месторождений. Возможность выявления аномалий определяется высотой полета, расстоянием между маршрутами и чувствительностью гамма-радиометра. Детальные поиски на участках аномалий аэрогамма-съемки осуществляются наземными методами. Автогамма-съемка успешно применяется в степных, лесостепных, полупустынных и предгорных районах при мощности рыхлых отложений до 3—5 м. Пешеходная гамма-съемка может производиться с любой необходимой степенью детальности. Как гамма-метод, так и эманационный метод позволяют определить урановую или ториевую природу радиоактивной аномалии.

 

Гравиметрический метод основан на изучении поля тяготения на поверхности земли, аномалии которого обусловлены различной плотностью горных пород, зависящей от их минерального состава и пористости. Плотность измеряется в граммах на кубический сантиметр и колеблется в значительных пределах.

Наименьшую плотность имеют песок, почвы, каменные угли — менее 2 г/см3.

Большинство жильных минералов, слюда, бокситы имеют плотность от 2,5 до 3 г/см3;

карбонаты железа и марганца, флюорит, лимонит имеют плотность от 3 до 4 г/см3;

богатые железные, пирротиновые, медноколчеданные и некоторые другие руды имеют плотность выше 4 г/см3.

 

Метаморфические средние и кислые изверженные породы обладают плотностью от 2,5 до 3 г/см3;

основные и ультраосновные породы, железистые кварциты относятся к породам повышенной плотности—от 3 до 4 г/см3.

 

Поисковое значение гравиметрических работ заключается в выявлении крупных структур, благоприятных для локализации залежей нефти и газа. При крупномасштабных гравиметрических исследованиях успешно решается вопрос поисков железных, хромитовых, медно-никелевых руд и некоторых других месторождений. Из неметаллических полезных ископаемых гравиметрия помогает искать уголь и соли. С помощью гравиметрии в Прикаспийской впадине были обнаружены сотни соляных куполов, что во много раз ускорило и удешевило поиски солей.

 

Сейсмометрический метод основан на изучении скорости распространения и времени пробега в земной коре продольных упругих волн, вызываемых взрывами в скважинах. Скорость распространения волн в горных породах зависит от физических свойств этих пород и глубины их залегания. Наибольшая скорость распространения сейсмических волн характерна для изверженных пород, несколько меньшая—для карбонатных и песчано-глинистых и самая низкая — для рыхлых отложений. Регистрация сейсмических колебаний производится сейсмическими станциями 1-24-КМПВ-ОВ, 1-72-МОВ-ОВ, 1-24-РНП, СЭФ-24 и др.

 

Наибольшее значение сейсмический метод имеет для поисков нефтяных и газовых месторождений, позволяя обнаруживать нефтегазоносные структуры на большой глубине. Детальные исследования дают возможность определить размеры этих структур и помогают ориентировать расположение глубоких скважин.

 

Широкое применение сейсмометрические исследования находят при изучении глубинного строения районов поисков, в которых отмечаются резко отличные по упругим свойствам горные породы и полезные ископаемые. Это прежде всего относится к угольным и соляным месторождениям. В Донбассе с помощью геофизических методов (сейсмометрия, гравиметрия, ВЭЗ) успешно определяется глубина залегания каменноугольных отложений. При изучении солянокупольных структур Эмбенского района сейсмометрические методы позволили определить незначительные поднятия, которые были пропущены при производстве гравиметрических работ.

 

Электрометрические методы основаны на различной электропроводности горных пород и руд. В геофизической практике пользуются понятием удельного сопротивления, измеряемого в Ом-метрах. Горные породы обычно имеют очень высокое сопротивление. В то же время сульфиды (пирит, галенит, халькопирит), некоторые окислы металлов (магнетит, касситерит, манганит), угли и графит хорошо проводят электрический ток.

 

В связи с возможностью изучения естественных и искусственных электромагнитных полей, возникающих в горных породах под воздействием источников постоянного или переменного тока, имеется большое число модификаций электрометрических методов.

 

Измерение электрических полей производится компенсационными приборами типа ЭП, ЭСК, КСР, ИКС и полевыми станциями-лабораториями. Разработана аппаратура для производства электрометрических работ с самолетов (станция БДК). При региональных геофизических исследованиях рудоносных областей с помощью электрометрических методов изучаются верхние горизонты земной коры, уточняется общая структура района, определяется мощность рыхлых отложений, выявляются аномалии над рудными телами и линзами пресной воды, скрытыми под наносами.

 

В задачу детальных электроразведочных работ входят поиски новых и уточнение контуров и элементов залегания известных рудных тел, прослеживание рудоконтролирующих разломов. При детальных работах в пределах рудных полей и месторождений широко применяются методы естественного поля, заряженного тела, вызванной поляризации, радиопросвечивания, вертикального электрического зондирования, электропрофилирования и др.

 

Метод естественного поля основан на изучении электрических полей, возникающих вблизи контакта горных пород и залежей полезных ископаемых, водоносных пластов и т. д. Метод успешно применяется при поисках сульфидных месторождений, некоторых типов углей и графита.

 

Метод вызванной поляризации основан на измерении разности потенциалов, возникающей в результате поляризации электронно-проводящих объектов под воздействием кратковременных импульсов внешних источников тока. Метод предназначается для поисков сплошных и вкрапленных рудных тел, сложенных минералами, хорошо проводящими электрический ток.

Метод заряженного тела применяется для прослеживания рудных тел, вскрытых хотя бы в одной точке.





Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 671; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.028 сек.