Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Измеряемые величины

Измерения являются инструментом познания объектов и явлений окружающего мира. Поэтому метрология относится к науке, занимающейся теорией познания – гноссиологии.

Объектами измерений являются физические и нефизические величины (в экономике, медицине, информатике, управлении качеством и пр.).

Вся современная физика может быть построена на семи основных величинах, которые характеризуют фундаментальные свойства материального мира. К ним относятся: длина, масса, время, сила электрического тока, термодинамическая температура, количество вещества и сила света. С помощью этих и двух дополнительных величин – плоского и телесного углов – введенных исключительно для удобства, образуется все многообразие производных физических величин и обеспечивается описание любых свойств физических объектов и явлений.

Измерения физических величин подразделяются на следующие области и виды:

1. Измерения геометрических величин: длин; отклонений формы поверхностей; параметров сложных поверхностей; углов.

2. Измерения механических величин: массы; силы; крутящих моментов, напряжений и деформаций; параметров движения; твердости.

3. Измерения параметров потока, расхода, уровня, объема веществ: массового и объемного расхода жидкостей в трубопроводах; расхода газов; вместимости; параметров открытых потоков; уровня жидкости.

4. Измерения давлений, вакуумные измерения: избыточного давления; абсолютного давления; переменного давления; вакуума.

5. Физико-химические измерения: вязкости; плотности; содержаний (концентрации) компонентов в твердых, жидких и газообразных веществах; влажности газов, твердых веществ; электрохимические измерения.

6. Теплофизические и температурные измерения: температуры; теплофизических величин.

7. Измерения времени и частоты: методы и средства воспроизведения и хранения единиц и шкал времени и частоты; измерения интервалов времени; измерения частоты периодических процессов; методы и средства передачи размеров единиц времени и частоты.

8. Измерения электрических и магнитных величин на постоянном и переменном токе: силы тока, количества электричества, электродвижущей силы, напряжения, мощности и энергии, угла сдвига фаз; электрического сопротивления, проводимости, емкости, индуктивности и добротности электрических цепей; параметров магнитных полей; магнитных характеристик материалов.

9. Радиоэлектронные измерения: интенсивности сигналов; параметров формы и спектра сигналов; параметров трактов с сосредоточенными и распределенными постоянными; свойств веществ и материалов радиотех-ническими методами; антенные.

10. Измерения акустических величин: акустические - в воздушной среде и в газах; акустические - в водной среде; акустические - в твердых телах; аудиометрия и измерения уровня шума.

11. Оптические и оптико-физические измерения: световые, измерения оптических свойств материалов в видимой области спектра; энергетических параметров некогерентного оптического излучения; энергетических параметров пространственного распределения энергии и мощности непрерывного и импульсного лазерного и квазимонохроматического излучения; спектральных, частотных характерстик, поляризации лазерного излучения; параметров оптических элементов, оптических характеристик материалов; характеристик фотоматериалов и оптической плотности.

12. Измерения ионизирующих излучений и ядерных констант: дозиметрических характеристик ионизирующих излучений; спектральных характеристик ионизирующих излучений; активности радионуклидов; радиометрических характеристик ионизирующих излучений.

В квалиметрии (разделе метрологии), посвященной измерению качества, не принято деление показателей качества на основные и производные. Здесь выделяются единичные и комплексные показатели качества. При этом единичные относятся к одному из свойств продукции, а комплексные характеризуют сразу несколько из свойств.

Размерность измеряемой величины является качественной ее характеристикой и обозначается символом dim, происходящим от слова dimension. Размерность основных физических величин обозначается соответствующими заглавными буквами. Например, для длины, массы и времени dim l = L; dim m = M; dim t = T.

При определении размерности производных величин руководствуются следующими правилами [47]:

1. Размерности левой и правой частей уравнений не могут не совпадать, так как сравниваться между собой могут только одинаковые свойства. Объединяя левые и правые части уравнений, можно прийти к выводу, что алгебраически суммироваться могут только величины, имеющие одинаковые размерности.

2. Алгебра размерностей мультипликативна, т. е. состоит из одного единственного действия - умножения.

2.1. Размерность произведения нескольких величин равна произведе­нию их размерностей. Так, если зависимость между значениями величин Q, А,В, С имеет вид Q = А × В × С, то

dim Q = dim A × dim B × dim C.

2.2. Размерность частного при делении одной величины на другую равна отношению их размерностей, т. е. если Q = А/В, то

dim Q = dim A/dim B.

2.3. Размерность любой величины, возведенной в некоторую степень, равна ее размерности в той же степени. Так, если Q = Аn, то

dim Q = .

Например, если скорость определять по формуле V = l / t, то dim V = dim l/dim t = L/Т = LТ-1. Если сила по второму закону Ньютона F = m×а, где а = V/ t - ускорение тела, то dim F = dim m × dim а = МL/Т2 = MТ-2.

Таким образом, всегда можно выразить размерность производной физической величины через размерности основных физических величин с помощью степенного одночлена:

dim Q = LaMbTg …,

где L, М, Т,... - размерности соответствующих основных физических величин; a, b, g, … - показатели размерности. Каждый из показателей размерности может быть положительным или отрицательным, целым или дробным числом, нулем. Если все показатели размерности равны нулю, то такая величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений). В гуманитарных науках, искусстве, спорте, квалиметрии, где номеклатура основных величин не определена, теория размерностей не находит пока эффективного применения.

Размер измеряемой величины является количественной ее характеристикой. Получение информации о размере физической или нефи-зической величины является содержанием любого измерения.

В теории измерений принято, в основном, различать пять типов шкал: наименований, порядка, разностей (интервалов), отношений и абсолютные.

Шкалы наименований характеризуются только отношением эквивалентности (равенства). Примером такой шкалы является распространённая классификация (оценка) цвета по наименованиям (атласы цветов до 1000 наименований).

Шкалы порядка - это расположенные в порядке возрастания или убывания размеры измеряемой величины. Расстановка размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием. Для облегчения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных). Недостатком реперных шкал является неопределённость интервалов между реперными точками. Поэтому баллы нельзя складывать, вычислять, перемножать, делить и т.п. Примерами таких шкал являются: знания студентов по баллам, землетрясения по 12 балльной системе, сила ветра по шкале Бофорта, чувствительность плёнок, твёрдость по шкале Мооса и т.д.

Шкалы разностей (интервалов) отличаются от шкал порядка тем, что по шкале интервалов можно уже судить не только о том, что размер больше другого, но и на сколько больше. По шкале инрервалов возможны такие математические действия, как сложение и вычитание. Характерным примером является шкала интервалов времени, поскольку интервалы времени можно суммировать или вычитать, но складывать, например, даты каких-либо событий не имеет смысла.

Шкалы отношений описывают свойства, к множеству самих коли-чественных проявлений которых применимы отношения эквивалентности, порядка и суммирования, а следовательно, вычитания и умножения. В шкале отношений существует нулевое значение показателя свойства. Примером является шкала длин. Любое измерение по шкале отношений заключается в сравнении неизвестного размера с известным и выражении первого через второй в кратном или дольном отношении.

Абсолютные шкалы обладают всеми признаками шкал отношений, но в них дополнительно существует естественное однозначное определе-ние единицы измерения. Такие шкалы соответствуют относительным величинам (отношения одноимённых физических величин, описываемах шкалами отношений). К таким величинам относятся коэффициент усиления, ослабления и т. п. Среди этих шкал существуют шкалы, значения которых находятся в пределах от 0 до 1 (коэффициент полезного действия, отражения и т.п.).

<== предыдущая лекция | следующая лекция ==>
ВВЕДЕНИЕ. Теоретические основы метрологии | Математическая модель измерения по шкале сравнения имеет вид
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 568; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.