Определение непрерывности в терминах приращений аргумента и функции
Вопрос
1.Непрерывность функции в точке. Рассмотрим функцию f (x), которая отображает множество действительных чисел на другое подмножество B действительных чисел. Говорят, что функция f (x) является непрерывной в точке , если для любого числа существует число , такое, что для всех , удовлетворяющих соотношений
выполняется неравенство
Определение непрерывности можно также сформулировать, используя приращения аргумента и функции. Функция является непрерывной в точке x = a, если справедливо равенство
где .
Приведенные определения непрерывности функции эквивалентны на множестве действительных чисел.
Функция является непрерывной на данном интервале, если она непрерывна в каждой точке этого интервала.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление