КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Акустовибрационный канал
Используемые технические средства Миниатюрные микрофоны. Являются простейшим средством перехвата речевой информации. Используют проводные соединения со звукозаписывающей аппаратурой. Микрофоны могут монтироваться в предметы интерьера помещения, в отверстиях, сделанных в стене из соседнего помещения, в телефонных и сетевых розетках, в оборудовании (системные блоки, принтеры, мониторы, элементы силовых кабелей и т.д.), под плинтусами, в осветительных системах и других объектах. Некоторые типы микрофонов (электретные) имеют очень малые размеры, например 7x5x2 мм и менее. Совершенствование параметров микрофонов идет, с одной стороны, в направлении повышения чувствительности, что связано со стремлением увеличить дальность перехвата акустической информации, а с другой – в направлении решения задачи отделения полезного сигнала от акустических шумов. Стремление уменьшить размеры микрофонов противоречит возможности улучшения их акустических параметров. На физическом уровне необходим переход на новые принципы действия. Например, использование акустонанокапиллярного эффекта, проявляющегося в нанотрубках. Под воздействием звука изменяется уровень заполнения капиллярного канала, который можно преобразовать в электрический сигнал. Переход на пленочные наноструктуры позволит существенно уменьшить размеры микрофонов и повысить их КПД. Могут быть использованы и другие ФЭ, например влияние ультразвука на движение носителей заряда, на поляризацию диэлектрика. Микрофоны направленного действия. Применяются в том случае, когда не удается использовать для перехвата акустической информации контролируемую зону (помещение). Микрофоны этого типа обеспечивают перехват акустического сигнала после многократного его отражения (эффект отражения звука), после прохождения его через открытые окна, форточки, воздуховоды системы вентиляции, через отверстия в стенах и перегородках. Используют следующие типы направленных микрофонов: параболические, трубчатые, плоские акустические фазированные решетки, органного типа, градиентные. Параболический микрофон содержит отражатель звука параболической формы (диаметр 200-500 мм), в фокусе которого установлен микрофон. Используется эффект отражения звука. Трубчатый микрофон, или микрофон "бегущей" волны, содержит трубку диаметром 10-30 мм и длиной от 15 до 200 мм. Известны модели с трубкой до 1 м. Трубка по окружности имеет щелевые отверстия. Она выполняет функцию звуковода. В акустических фазированных решетках использован принцип размещения на плоскости нескольких десятков либо микрофонов, либо открытых торцов акустопроводов, звук от которых передается микрофону-сумматору. Такой микрофон обладает хорошими маскировочными свойствами (встраивается в стенку портфеля, размещается с внутренней стороны пиджака, используется как декоративный элемент). Микрофон органного типа представляет собой пучок из нескольких десятков тонких трубок с длинами от нескольких сантиметров до метра и более. Звуковые волны, приходящие к приемнику по осевой линии, проходят в трубки м поступают в предкапсульный объем в одинаковой фазе, и их амплитуды складываются. А звуковые волны, приходящие под углом к оси, оказываются сдвинутыми по фазе, так как трубки имеют разную длину. Градиентные микрофоны имеют значительно меньшие размеры, чем предыдущие типы. Используется свойство градиентности давления звуковой волны. Для практической реализации возможностей микрофонов направленного действия (прослушивание на расстоянии до 100 м и более) требуется специальная обработка акустических сигналов по шумоочистке. Диктофоны. Их разновидностей достаточно много. В последнее время предпочтение отдается цифровым магнитофонам с ФЛЕШ-памятью: SAMSYNG SVR-240, OLIMPYS DS-150, Спутник 1200. Многие из них оборудованы системой автоматического включения при паузах в разговорах (акусто-матом). Диктофоны размещаются в дипломатах, пачках сигарет, в корпусах наручных часов и т.д. Дальнейшее совершенствование диктофонов идет по пути использования более эффективной микроэлектроники, снижения энергопотребления и уменьшения размеров, исключения каких-либо подвижных элементов.
В акустовибрационном канале (или виброакустическом) средой распространения акустических сигналов являются элементы конструкций зданий (стены, потолки, оконные рамы, двери, трубопроводы и другие элементы), элементы конструкций технических систем, находящихся в помещении. Акустические колебания, воздействуя на твердые поверхности, преобразуются в механические колебания частиц твердых тел и распространяются по ним. Так, например, воздействуя на стену помещения, акустический сигнал порождает вибрационные колебания твердого тела, т.е. происходит проявление ФЭ, схема которого представлена на рис. 9.
Рис. 9. Эффект преобразования акустических колебаний
Большинство твердых тел являются хорошими проводниками звуковых колебаний (вибрационных колебаний). Вибрационные колебания могут быть непосредственно приняты, преобразованы в электрические колебания, усилены и записаны. А затем, по мере необходимости, могут быть преобразованы в акустические колебания. Структура акустовибрационного канала приведена на рис. 10.
Рис. 10. Структура акустовибрационного канала
В случае, если источник акустического сигнала будет непосредственно связан с твердой средой, структурная схема будет иметь следующий вид (рис. 11).
Рис. 11. Структура акустовибрационного канала (без воздушной среды)
Физическая схема акустовибрационного канала представлена на рис. 12.
Рис. 12. ФСх акустовибрационного канала
КПД акустовибрационного канала зависит от величины потерь за счет отражения звука (качество поверхности твердого тела) и за счет преобразования звуковых колебаний в тепловые колебания частиц твердого тела (упругие свойства тела). Кроме того, твердое тело должно обладать хорошей звукопроводимостью, которая также связана с его упругими свойствами.
Дата добавления: 2014-01-15; Просмотров: 1651; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |