КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нечеткая логика
При формализации знаний достаточно часто встречаются качественные знания, например, высокая температура при гриппе, слабое свечение нити накаливания, молодой дипломат и т.д. Для формального представления таких качественных знаний американский математик, профессор информатики в Университете в Беркли (Калифорния) Лофти А.Заде (Иран) предложил в 1965 году формальный аппарат нечеткой (fuzzy) логики [38]. Нечеткое подмножество N множества M определяется как множество упорядоченных пар N = {μN(x)/x}, где μN(x) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в интервале [0, 1] и указывающая степень (или уровень) принадлежности элемента x подмножеству N. Таким образом, нечеткое множество N можно записать как nN = Σ(μ(Xi) / Xi), i=1где Xi - i-е значение базовой шкалы, а знак "+" не является обозначением операции сложения, а имеет смысл объединения. Определим лингвистическую переменную (ЛП) как переменную, значение которой определяется набором словесных характеристик некоторого свойства. Например, ЛП "возраст" может иметь значения ЛП = МлВ, ДВ, ОВ, ЮВ, МВ, ЗВ, ПВ, СВ,обозначающие возраст младенческий, детский, отроческий, юношеский, молодой, зрелый, преклонный и старый, соответственно. Множество M - это шкала прожитых человеком лет [0..120]. Функция принадлежности определяет, насколько мы уверены, что данное количество прожитых лет можно отнести к данному значению ЛП. Допустим, что неким экспертом к молодому возрасту отнесены люди в возрасте 20 лет со степенью уверенности 0,8, в возрасте 25 лет со степенью уверенности 0,95, в возрасте 30 лет со степенью уверенности 0,95 и в возрасте 35 лет со степенью уверенности 0,7. Итак: Значение ЛП=МВ можно записать: МВ = μ(X1) / X1 + μ(X2) / X2 + μ(X3) / X3 + μ(X4) / X4 = = 0,8 / X1 + 0,95 / X2 + 0,95 / X3 + 0,7 / X4.Таким образом, нечеткие множества позволяют учитывать субъективные мнения отдельных экспертов. Для большей наглядности покажем множество МВ графически при помощи функции принадлежности (рис. 2.7).
Для операций с нечеткими множествами существуют различные операции, например, операция "нечеткое ИЛИ" (иначе) задается в логике Заде [39], [40]: и при вероятностном подходе так: μ(x)=μ1(x)+μ2(x)-μ1(x) · μ2(x).Существуют и другие операции над нечеткими числами, такие как расширенные бинарные арифметические операции (сложение, умножение и пр.) для нечетких чисел, определяемые через соответствующие операции для четких чисел с использованием принципа обобщения и т.д. Как мы увидим в дальнейшем, нечеткие множества (другое название - мягкие вычисления) очень часто применяются в экспертных системах. Нечеткая логика применяется как удобный инструмент для управления технологическими и индустриальными процессами, для интеллектуального домашнего хозяйства и электроники развлечения, в системах обнаружения ошибок и других экспертных системах. Разработаны специальные средства нечеткого вывода, например, инструментальное средство Fuzzy CLIPS. Нечеткая логика была изобретена в Соединенных Штатах, и сейчас быстрый рост этой технологии начался в Японии, Европе и теперь снова достиг США. Развитием этого направления является реализации в системах представления знаний НЕ-факторов: неполнота, неточность, недоопределенность, неоднозначность, некорректность и др. [41]. Завершая лекцию по СПЗ, следует отметить следующее. Системы представления знаний и технологии работы со знаниями продолжают развиваться. Читатель может самостоятельно познакомиться с новым языком описания декларативных знаний (ЯОДЗ) и технологией функционально-ориентированного проектирования (ФОП-технологией) для решения информационно-сложных задач в работах [42], [43]. Кроме традиционных языков (LISP, PROLOG, SMALLTALK, РЕФАЛ) и инструментальных средств (LOOPS, KEE, ART) для представления знаний в настоящее время появляются новые веб-ориентированные версии ИС [44]. Весьма популярными стали средства на базе JAVA: системы Exsys Corvid, JESS. Язык HTML явился основой для представления знаний в среде Интернет [3]. С такими современными средствами, как система G2 и система CLIPS, читатель сможет познакомиться в лекциях 6 и 7.
Дата добавления: 2014-01-15; Просмотров: 377; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |