Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Конфликты в конвейере и способы минимизации их влияния на производительность процессора

Интерфейс с шиной ввода/вывода

Тактовые генераторы

Работа всех устройств видеоадаптера VGA синхронизируется сигналом Dot Clock или производными от него тактовыми сигналами. Частота сигнала Dot Clock равна верхней граничной частоте выходного видеосигнала. Кроме то­го, при заданном разрешении этой же частотой определяются значения час­тот строчной и кадровой синхронизации.

Синхронизация устройств стандартного видеоадаптера VGA в зависимости от выбранного видеорежима осуществляется тактовым сигналом, формируе­мым одним из двух встроенных генераторов сигналов фиксированных час­тот: 25,175 и 28,322 МГц. Кроме того, предусмотрена возможность исполь­зования внешнего тактового генератора (в первых видеоадаптерах VGA, интегрированных на материнскую плату). Выбор тактового генератора осу­ществляется программно.

Видеоадаптер VGA вставляется в 16-битный слот шины ввода/вывода ISA, поэтому он снабжен специальным интерфейсом, выполняющим следующие функции:

СЗ согласование разрядности внутренней 8-разрядной шины видеоадаптера VGA и 16-разрядной шины ISA компьютера;

О согласование частот тактовых сигналов видеоадаптера (Dot Clock) и шины ISA.

Современные видеоадаптеры подключаются к высокоскоростным шинам (РС1, AGP).

Значительное преимущество конвейерной обработки перед последовательной имеет место в идеальном конвейере, в котором отсутствуют конфликты и все команды выполняются друг за другом без перезагрузки конвейера. Наличие конфликтов снижает реальную производительность конвейера по сравнению с идеальным случаем.

Конфликты - это такие ситуации в конвейерной обработке, которые препятствуют выполнению очередной команды в предназначенном для нее такте.

Конфликты делятся на три группы:

  • структурные,
  • по управлению,
  • по данным.

Структурные конфликты возникают в том случае, когда аппаратные средства процессора не могут поддерживать все возможные комбинации команд в режиме одновременного выполнения с совмещением.

Причины структурных конфликтов.

  1. Не полностью конвейерная структура процессора, при которой некоторые ступени отдельных команд выполняются более одного такта.

Пусть этап выполнения команды i+1 занимает 3 такта. Тогда диаграмма работы конвейера будет иметь вид, представленный в таблица 3.8.

Таблица 3.8.  
Команда Такт  
                   
i IF ID OR EX WB            
i+1   IF ID OR EX EX EX WB      
i+2     IF ID OR O O EX WB    
i+3       IF ID OR O O EX    
i+4         IF ID OR O O    

При этом в работе конвейера возникают так называемые "пузыри" (обработка команд i+2 и следующих за ней, начиная с такта 6), которые снижают производительность процессора.

Эту ситуацию можно было бы ликвидировать двумя способами. Первый предполагает увеличение времени такта до такой величины, которая позволила бы все этапы любой команды выполнять за один такт. Однако при этом существенно снижается эффект конвейерной обработки, так как все этапы всех команд будут выполняться значительно дольше, в то время как обычно нескольких тактов требует выполнение лишь отдельных этапов очень небольшого количества команд. Второй способ предполагает использование таких аппаратных решений, которые позволили бы значительно снизить затраты времени на выполнение данного этапа (например, использовать матричные схемы умножения). Но это приведет к усложнению схемы процессора и невозможности реализации на этой БИС других, функционально более важных, узлов. Так как представленная в таблица 3.8 ситуация возникает при реализации команд, относительно редко встречающихся в программе, то обычно разработчики процессоров ищут компромисс между увеличением длительности такта и усложнением того или иного устройства процессора.

  1. Недостаточное дублирование некоторых ресурсов.

Одним из типичных примеров служит конфликт из-за доступа к запоминающим устройствам. Из таблица 3.6 видно, что в случае, когда операнды и команды находятся в одном запоминающем устройстве, начиная с такта 3, работу конвейера придется постоянно приостанавливать, поскольку различные команды в одном и том же такте обращаются к памяти на считывание команды, выборку операнда, запись результата.

Борьба с конфликтами такого рода проводится путем увеличения количества однотипных функциональных устройств, которые могут одновременно выполнять одни и те же или схожие функции. Например, в современных микропроцессорах обычно разделяют кэш-память для хранения команд и кэш-память данных, а также используют многопортовую схему доступа к регистровой памяти, при которой к регистрам можно одновременно обращаться по одному каналу для записи, а по другому - для считывания информации. Конфликты из-за исполнительных устройств обычно сглаживаются введением в состав микропроцессора дополнительных блоков. Так, в микропроцессоре Pentium-4 предусмотрено 4 АЛУ для обработки целочисленных данных. Процессоры, имеющие в своем составе более одного конвейера, называются суперскалярными.

Недостатком суперскалярных микропроцессоров является необходимость синхронного продвижения команд в каждом из конвейеров. В таблица 3.9 представлена последовательность выполнения команд в микропроцессоре, имеющем два конвейера, при условии, что команде К1 требуется 3 такта на этапе EX.

Таблица 3.9.  
Этап Такт  
               
IF K1 K2 K3 K4 K5 K6 K7 K8 K7 K9 K7 K10 K11 K12  
ID     K1 K2 K3 K4 K5 K6 K5 K8 K5 K9 K7 K10  
OR         K1 K2 K3 K4 K3 K6 K3 K8 K5 K9  
EX             K1 K2 K1 K4 K1 K6 K3 K8  
WB                   K2   K4 K1 K6  

При этом команды будут завершаться в последовательности

К2-К4-К1-К6-...

Следовательно, для обеспечения правильной работы суперскалярного микропроцессора при возникновении затора в одном из конвейеров должны приостанавливать свою работу и другие. В противном случае может нарушиться исходный порядок завершения команд программы. Но такие приостановки существенно снижают быстродействие процессора. Разрешение этой ситуации состоит в том, чтобы дать возможность выполняться командам в одном конвейере вне зависимости от ситуации в других конвейерах. Это приводит к неупорядоченному выполнению команд. При этом команды, стоящие в программе позже, могут завершиться ранее команд, стоящих впереди. Аппаратные средства микропроцессора должны гарантировать, что результаты выполненных команд будут записаны в приемник в том порядке, в котором команды записаны в программе. Для этого в микропроцессоре результаты этапа выполнения команды обычно сохраняются в специальном буфере восстановления последовательности команд. Запись результата очередной команды из этого буфера в приемник результата проводится лишь после того, как выполнены все предшествующие команды и записаны их результаты.

Конфликты по управлению возникают при конвейеризации команд переходов и других команд, изменяющих значение счетчика команд.

Суть конфликтов этой группы наиболее удобно проиллюстрировать на примере команд условного перехода. Пусть в программе, представленной в таблица 3.6, команда i+1 является командой условного перехода, формирующей адрес следующей команды в зависимости от результата выполнения команды i. Команда i завершит свое выполнение в такте 5. В то же время команда условного перехода уже в такте 3 должна прочитать необходимые ей признаки, чтобы правильно сформировать адрес следующей команды. Если конвейер имеет большую глубину (например, 20 ступеней), то промежуток времени между формированием признака результата и тактом, где он анализируется, может быть еще большим. В инженерных задачах примерно каждая шестая команда является командой условного перехода, поэтому приостановки конвейера при выполнении команд переходов до определения истинного направления перехода существенно скажутся на производительности процессора.

Наиболее эффективным методом снижения потерь от конфликтов по управлению служит предсказание переходов. Суть данного метода заключается в том, что при выполнении команды условного перехода специальный блок микропроцессора определяет наиболее вероятное направление перехода, не дожидаясь формирования признаков, на основании анализа которых этот переход реализуется. Процессор начинает выбирать из памяти и выполнять команды по предсказанной ветви программы (так называемое исполнение по предположению, или "спекулятивное" исполнение). Однако так как направление перехода может быть предсказано неверно, то получаемые результаты с целью обеспечения возможности их аннулирования не записываются в память или регистры (то есть для них не выполняется этап WB), а накапливаются в специальном буфере результатов.

Если после формирования анализируемых признаков оказалось, что направление перехода выбрано верно, все полученные результаты переписываются из буфера по месту назначения, а выполнение программы продолжается в обычном порядке. Если направление перехода предсказано неверно, то буфер результатов очищается. Также очищается и конвейер, содержащий команды, находящиеся на разных этапах обработки, следующие за командой условного перехода. При этом аннулируются результаты всех уже выполненных этапов этих команд. Конвейер начинает загружаться с первой команды другой ветви программы. Так как конвейерная обработка эффективна при большом числе последовательно выполненных команд, то перезагрузка конвейера приводит к значительным потерям производительности. Поэтому вопросам эффективного предсказания направления ветвления разработчики всех микропроцессоров уделяют большое внимание.

Методы предсказания переходов делятся на статические и динамические. При использовании статических методов до выполнения программы для каждой команды условного перехода указывается направление наиболее вероятного ветвления. Это указание делается или программистом с помощью специальных средств, имеющихся в некоторых языках программирования, по опыту выполнения аналогичных программ либо результатам тестового выполнения программы, или программой-компилятором по заложенным в ней алгоритмам.

Методы динамического прогнозирования учитывают направления переходов, реализовывавшиеся этой командой при выполнении программы. Например, подсчитывается количество переходов, выполненных ранее по тому или иному направлению, и на основании этого определяется направление перехода при следующем выполнении данной команды.

В современных микропроцессорах вероятность правильного предсказания направления переходов достигает 90-95 %.

Конфликты по данным возникают в случаях, когда выполнение одной команды зависит от результата выполнения предыдущей команды.

При обсуждении этих конфликтов будем предполагать, что команда i предшествует команде j.

Существует несколько типов конфликтов по данным.

  1. Конфликты типа RAW (Read After Write): команда j пытается прочитать операнд прежде, чем команда i запишет на это место свой результат. При этом команда j может получить некорректное старое значение операнда.

Проиллюстрируем этот тип конфликта на примере выполнения команд, представленных в таблица 3.6. Пусть выполняемые команды имеют следующий вид:

i) ADD R1,R2; R1 = R1+R2

i+1=j) SUB R3,R1; R3 = R3-R1

Команда i изменит состояние регистра R1 в такте 5. Но команда i+1 должна прочитать значение операнда R1 в такте 4. Если не приняты специальные меры, то из регистра R1 будет прочитано значение, которое было в нем до выполнения команды i.

Уменьшение влияния конфликта типа RAW обеспечивается методом обхода (продвижения) данных. В этом случае результаты, полученные на выходах исполнительных устройств, помимо входов приемника результата передаются также на входы всех исполнительных устройств микропроцессора. Если устройство управления обнаруживает, что данный результат требуется одной из последующих команд в качестве операнда, то он сразу же, параллельно с записью в приемник результата, передается на вход исполнительного устройства для использования следующей командой.

Конфликты типа RAW обусловлены именно конвейерной организацией обработки команд.

Главной причиной двух других типов конфликтов по данным является возможность неупорядоченного выполнения команд в современных микропроцессорах, то есть выполнение команд не в том порядке, в котором они записаны в программе.

  1. Конфликты типа WAR (Write After Read): команда j пытается записать результат в приемник, прежде чем он считается оттуда командой i, При этом команда i может получить некорректное новое значение операнда:

3. i) ADD R1,R2

i+1 =j) SUB R2,R3

Этот конфликт возникнет в случае, если команда j вследствие неупорядоченного выполнения завершится раньше, чем команда i прочитает старое содержимое регистра R2.

  1. Конфликты типа WAW (Write After Write): команда j пытается записать результат в приемник, прежде чем в этот же приемник будет записан результат выполнения команды i, то есть запись заканчивается в неверном порядке, оставляя в приемнике результата значение, записанное командой i:

5. i) ADD R1,R2

6....

j) SUB R1,R3

Устранение конфликтов по данным типов WAR и WAW достигается путем отказа от неупорядоченного исполнения команд, но чаще всего путем введения буфера восстановления последовательности команд.

Как отмечалось выше, наличие конфликтов приводит к значительному снижению производительности микропроцессора. Определенные типы конфликтов требуют приостановки конвейера. При этом останавливается выполнение всех команд, находящихся на различных стадиях обработки (до 20 ти команд в Pentium-4). Другие конфликты, например, при неверном предсказанном направлении перехода, ведут к необходимости полной перезагрузки конвейера. Потери будут тем больше, чем более длинный конвейер используется в микропроцессоре. Такая ситуация явилась одной из причин сокращения числа ступеней в микропроцессорах последних моделей. Так, в микропроцессоре Itanium конвейер содержит всего 10 ступеней. При этом его тактовая частота составляет около 1 МГц [[2]]. Однако на каждой ступени выполняется больше функциональных действий, чем в Pentium-4.

 

Раздел 4 Организация работы памяти компьютера
Тема 4.1 Организация распределения памяти в ЭВМ ЦельРассмотреть вопросы, связанные с распределением памяти, организацией виртуальной памяти на основе страничного распределения, а также сегментно-страничное представление памяти в персональной ЭВМ и методы сокращения времени адресного преобразования.
Запоминающие устройства являются одной из основных частей любого компьютера. Их работа, как отмечалось ранее, строится по иерархическому принципу. От того, насколько рационально организовано использование памяти на каждом из уровней иерархии и взаимодействие между ЗУ различных уровней, во многом зависит эффективность работы ЭВМ. Ключевую роль в этой иерархии играет оперативная память. Именно в ней хранятся программы во время их исполнения, именно отсюда загружаются в регистры микропроцессора исходные данные для обработки. Сюда же, как правило, передаются и окончательные результаты работы программ. Поэтому рациональное использование ОЗУ на протяжении всего времени работы ЭВМ чрезвычайно важно. В оперативной памяти мультипрограммных ЭВМ обычно постоянно хранится ядро операционной системы. Программы ядра ОС в процессе работы ЭВМ выполняются часто, время их выполнения невелико. Остальные части операционной системы, как правило, находятся во внешней памяти, и в случае необходимости требуемые модули загружаются в оперативную память, занимая ее часть. В оставшейся части ОП хранится несколько программ, выполняемых в мультипрограммном режиме, и используемые ими данные. Распределение памяти предполагает удовлетворение потребностей как пользователей, так и системных средств. Эти требования в большей части противоречивы. Системные цели заключаются, прежде всего, в увеличении степени использования оперативной памяти при параллельном развитии нескольких процессов в мультипрограммном режиме, а также в реализации защиты информации при развитии этих процессов, обеспечении взаимодействия между процессами и т. д. Требования пользователей к памяти весьма разнообразны: быстрое выполнение коротких программ, выделение оперативной памяти в размерах, превышающих физически существующую, легкость и простота взаимодействия с другими программами при использовании, например, общих процедур и т. п. Вследствие этого распределение памяти всегда носит компромиссный характер. Система управления памятью выполняет следующие основные функции [[2]]
  • учет состояния свободных и уже распределенных областей памяти и модернизация этой информации всякий раз, когда в распределении памяти производятся изменения;
  • распределение памяти для выполнения задач (определение, какой задаче, когда и в каком количестве выделить оперативную память);
  • непосредственное выделение задаче оперативной памяти; если свободные области оперативной памяти отсутствуют, то предварительное их освобождение путем сохранения информации во внешней памяти.
Все доступное множество адресов элементов хранения, упорядоченное по какому-либо признаку, называют адресным пространством памяти. Физическое адресное пространство организовано просто как одномерный массив ячеек, каждой из которых присвоен свой номер, называемый физическим адресом. В общем случае, под адресом понимают некий идентификатор, однозначно определяющий расположение элемента хранения среди прочих элементов в составе среды хранения. Для адресации данных в физическом адресном пространстве программы используют логическую адресацию. Процессор автоматически транслирует логические адреса в физические, выдаваемые на адресную шину и воспринимаемые схемами управления (контроллерами) памяти. Существуют две стратегии распределения оперативной памяти, как и любого ресурса: статическое и динамическое распределение. При статическом распределении вся необходимая оперативная память выделяется процессу в момент его порождения. При этом память выделяется единым блоком необходимой длины, начало которого определяется базовым адресом. Программа пишется в адресах относительно начала блока, а физический адрес команды или операнда при выполнении программы формируется как сумма базового адреса блока и относительного адреса в блоке. Значение базового адреса устанавливается при загрузке программы в оперативную память.Так как в разных программах используются блоки разной длины, то при таком подходе возникает проблема фрагментации памяти, то есть возникают свободные участки памяти, которые невозможно без предварительного преобразования использовать для вычислительного процесса. Проиллюстрируем это простым примером. Пусть ОП имеет объем 10 Мбайт, а для выполнения программ A, B, C, D требуются следующие объемы памяти: A - 2 Мбайт, B - 1 Мбайт, C - 4 Мбайт, D - 4 Мбайт. Начальное распределение памяти и распределение памяти после выполнения некоторых программ представлено на рис. 4.1. Рис. 4.1. Статическое распределение памяти:a - начальное распределение; б - после завершения программы A;в - после завершения программы B; г - после завершения программы C Из рисунка видно, что программа D при статическом распределении памяти может быть загружена в оперативную память лишь после завершения выполнения всех предыдущих программ, хотя необходимый для нее объем памяти существовал уже после завершения работы программы A. В то же время для улучшения показателей работы мультипрограммной ЭВМ требуется, чтобы в оперативной памяти постоянно находилось возможно большее количество программ, готовых к выполнению. Данную проблему можно частично решить перераспределением памяти после завершения выполнения каждой программы с целью формирования единого свободного участка, который может быть выделен новой программе, поступающей на обработку (дефрагментация памяти). Однако это требует трудоемкой работы системных средств и практически не используется. Современные системы распределения памяти опираются на две концепции: динамического использования ресурсов и виртуализации. При динамическом распределении памяти каждой программе в начальный момент выделяется лишь часть от всей необходимой ей памяти, а остальная часть выделяется по мере возникновения реальной потребности в ней.Такой подход базируется на следующих предпосылках. Во-первых, при каждом конкретном исполнении в зависимости от исходных данных некоторые части программы (до 25% ее длины) вообще не используются. Следует стремиться к тому, чтобы эти фрагменты кода не загружались в ОП. Во-вторых, исполнение программы характеризуется так называемым принципом локальности ссылок. Он подразумевает, что при исполнении программы в течение некоторого относительно малого интервала времени происходит обращение к памяти в пределах ограниченного диапазона адресов (как по коду программы, так и по данным). Следовательно, на протяжении этого времени нет необходимости хранить в ОП другие блоки программы. При этом системные средства должны отслеживать возникновение требований на обращение к тем частям программы, которые в данный момент отсутствуют в ОЗУ, выделять этой программе необходимый блок памяти и помещать туда из внешнего ЗУ требуемую часть программы. Для этого может потребоваться предварительное перемещение некоторых блоков информации из ОЗУ во внешнюю память. Данные перемещения должны быть скрыты от пользователя и в наименьшей степени замедлять работу его программы. Перемещение блоков информации из ОЗУ во внешнюю память с целью освобождения места для новой информации происходит обычно по одному из следующих алгоритмов: LRU (least recently used) - наиболее давно не использовавшийся; FIFO - самый давний по пребыванию в ОЗУ; Random - случайным образом. Динамическое распределение памяти тесно переплетается с понятием виртуальной памяти. Принцип виртуальной памяти предполагает, что пользователь при подготовке своей программы имеет дело не с физической ОП, действительно работающей в составе компьютера и имеющей некоторую фиксированную емкость, а с виртуальной (кажущейся) одноуровневой памятью, емкость которой равна всему адресному пространству, определяемому размером адресной шины (Lша) компьютера: Vвирт >> Vфиз, Vвирт = 2Lша. Для персональной ЭВМ на основе 32-разрядных микропроцессоров Vвирт= 232 = 4 Гбайт. При этом, естественно, в ЭВМ должен быть обеспечен достаточный объем внешней памяти для хранения всех программ, обрабатываемых на компьютере. Программист имеет в своем распоряжении адресное пространство, ограниченное лишь разрядностью адресной шины, независимо от общего объема оперативной памяти компьютера и объемов памяти, используемых другими программами, параллельно обрабатываемыми в мультипрограммной ЭВМ. Виртуальная память, обеспечивая возможность программисту обращаться к очень большому объему непрерывного адресного пространства, предоставляемого в его монопольное распоряжение, обладает обычными свойствами: побайтовая адресация, время доступа, сравнимое со временем доступа к оперативной памяти. На всех этапах подготовки программ, включая загрузку в оперативную память, программа представляется в виртуальных адресах, и лишь при выполнении машинной команды виртуальные адреса преобразуются в физические. Для каждой программы, выполняемой в мультипрограммном режиме, создается своя виртуальная память. Каждая программа использует одни и те же виртуальные адреса от нулевого до максимально большого в данной архитектуре. Для преобразования виртуальных адресов в физические физическая и виртуальная память разбиваются на блоки фиксированной длины, называемые страницами. Объемы виртуальной и физической страниц совпадают. Страницы виртуальной и физической памяти нумеруются. Виртуальный (логический) адрес в этом случае представляет собой номер виртуальной страницы и смещение внутри этой страницы.В свою очередь, физический адрес - это номер физической страницы и смещение в ней. Вначале в ОП загружается первая страница программы и ей передается управление. Когда в ходе выполнения программы происходит обращение за пределы загруженной страницы, операционная система прерывает выполнение данной программы, загружает требуемую страницу в ОП, после чего передает управление прерванной программе. Правила перевода номеров виртуальных страниц в номера физических страниц обычно задаются в виде таблицы страничного преобразования. Такие таблицы формируются системой управления памятью и модифицируются каждый раз при перераспределении памяти. Перевод виртуальных адресов в физические проиллюстрирован на рис. 4.2. Рис. 4.2. Преобразование виртуального адреса в физический Рассмотрим пример преобразования адреса виртуальной страницы в адрес физической страницы. Пусть компьютер имеет оперативную память VОЗУ=3 и адресное пространство, предполагающее разбиение на страницы объемом Vстр=1. Каждая программа, в свою очередь, разбивается на виртуальные страницы того же объема. Пусть коэффициент мультипрограммирования данной ЭВМ равен четырем, то есть на компьютере могут одновременно выполняться до четырех программ. Переключение между программами происходит через tk = 1. Время выполнения каждой страницы любой программы составляет t = 2tk. Полагаем, что страницы программ загружаются в оперативную память по мере их необходимости и, по возможности, в свободные области ОЗУ. Если вся память занята, то новая страница замещает ту, к которой дольше всего не было обращений (механизм замещения LRU). Пусть выполняемые программы имеют следующее количество страниц: VA=2, VB=1, VC=3, VD=2. Тогда таблица загрузки оперативной памяти и таблицы страничного преобразования для каждой программы будут иметь следующий вид:
Таблица 4.1.  
Страница Такты  
                                 
Динамическое распределение оперативной памяти  
ОЗУ 0 А0 А0 А0 D0 D0 D0 C0 C0 C0 C1 C1 C1 C1 C1 C1 C1  
    B0 B0 B0 A0 A0 A0 D0 D0 D0 D1 D1 D1 D1 D1 D1  
      C0 C0 C0 B0 B0 B0 A1 A1 A1 A1 A1 A1 C2 C2  
  Таблица страничного преобразования для программы A  
A 0     - -       - - - - - - - - -  
  - - - - - - - -             - -  
  Таблица страничного преобразования для программы B  
B 0 -       -       - - - - - - - -  
  Таблица страничного преобразования для программы C  
С 0 - -       -       - - - - - - -  
  - - - - - - - - -                
  - - - - - - - - - - - - - -      
  Таблица страничного преобразования для программы  
D 0 - - -       -       - - - - - -  
  - - - - - - - - - -              

В таблице распределения оперативной памяти выделены номера активных в данном такте страниц.

В таблицах страничного преобразования прочерками отмечены ситуации, когда данная виртуальная страница отсутствует в оперативной памяти.

Если каждая страница имеет объем 1000 адресуемых ячеек, то, например, в такте 9 обращение по виртуальному адресу 1100 программы A (виртуальная страница 1, смещение в странице равно 100) приведет к обращению по физическому адресу 2100 (физическая страница 2, смещение в физической странице такое же, как и в виртуальной - 100).

Таблица страничного преобразования хранится в ОП. В связи с этим каждое обращение программы к памяти за командой или за операндом требует дополнительного обращения к оперативной памяти для страничного преобразования, что существенно снижает производительность компьютера. Для уменьшения влияния этого фактора используются различные подходы. Основной из них - метод, при котором после первого преобразования номера виртуальной страницы полученный номер физической страницы запоминается во внутренних служебных регистрах микропроцессора. При очередном обращении к памяти аппаратными средствами микропроцессора осуществляется проверка того, было ли уже обращение к данной виртуальной странице. Если было, то номер соответствующей ей физической страницы уже находится в микропроцессоре. В противном случае преобразование выполняется обычным образом с обращением к оперативной памяти. Так как программа может достаточно долго обращаться к адресам, находящимся в пределах одной страницы, такой подход существенно сокращает время на страничное преобразование.

 

 
    Тема 4.2 Система управления памятью в персональной ЭВМ   Цель: Рассмотреть вопросы, связанные с распределением памяти, организацией виртуальной памяти на основе страничного распределения, а также сегментно-страничное представление памяти в персональной ЭВМ и методы сокращения времени адресного преобразования.
В ЭВМ на основе 32-разрядного микропроцессора при работе в так называемом защищенном режиме, поддерживающем мультипрограммирование и обеспечивающем адресацию операндов в максимально возможном для данной архитектуры диапазоне до 232 байт, виртуальная память организуется на основе сегментно-страничного представления памяти. При этом память разбивается на сегменты переменной длины, выделяемые пользователю под размещение его программ и данных. Сегменты, в свою очередь, делятся на страницы фиксированной длины (4К = 212 байт), используемые системой управления памятью для ее виртуализации [4] Начало каждого сегмента устанавливается операционной системой через соответствующий сегментный регистр и скрыто от пользователя. Пользователь пишет свои программы в адресах относительно начала сегмента, полагая, что он располагает сегментом максимально возможной для данной архитектуры длины (232 байт). Аппаратные средства микропроцессора сначала проводят сегментное преобразование адреса, а затем - страничное. Механизм формирования физического адреса при сегментно-страничной организации памяти показан на рис. 4.3 Рис. 4.3. Формирование физического адреса при сегментно-страничной организация памяти в 32-разрядном микропроцессоре Основой получения физического адреса, выдаваемого на адресную шину микропроцессора, служит логический адрес. Он состоит из двух частей: селектора, являющегося идентификатором сегмента, и смещения в сегменте. Смещение в сегменте (32 разряда) (эффективный адрес) вычисляется по задаваемому в команде режиму адресации операнда и является виртуальным адресом операнда. При обращении к команде в качестве смещения выступает значение регистра-указателя команд. Селектор размещается в сегментном регистре (см. рис. 4.3). Основная его часть представляет собой номер (INDEX), по которому в одной из специальных таблиц дескрипторов можно найти дескриптор (описатель) данного сегмента. Вид используемой таблицы определяется битом TI (table indicator) селектора. Селектор содержит также двухразрядное поле RPL, используемое при организации защиты памяти по привилегиям. Дескриптор (рис. 4.4) содержит сведения о сегменте. В одном из его полей содержится базовый адрес сегмента. В остальных полях записана дополнительная информация о сегменте: длина, допустимый уровень прав доступа к данному сегменту с целью защиты находящейся в нем информации, тип сегмента (сегмент кода, сегмент данных, специальный системный сегмент и т.д.) и некоторые другие атрибуты. Рис. 4.4. Структура дескриптора сегмента Сумма полученного из дескриптора базового адреса сегмента и вычисленного смещения дает линейный адрес операнда, который при включенном механизме страничного преобразования представляет собой номер виртуальной страницы (старшие 20 разрядов) и смещение операнда в странице (младшие 12 разрядов линейного адреса в соответствии с объемом страницы в 4 Кбайт). При преобразовании номера виртуальной страницы в номер физической используются следующие системные объекты: каталог таблиц страниц (КТС) и таблицы страниц (ТС). Структуры этих таблиц сходны между собой (рис. 4.5). Рис. 4.5. Элемент каталога таблиц страниц (таблицы страниц) Преобразование проводится в два этапа. Сначала по разрядам А31-А22 линейного адреса в КТС выбирается нужный элемент. Каталог таблиц страниц всегда присутствует в ОП и содержит указания по размещению таблицы страниц, относящейся к тому или иному процессу. Элемент КТС содержит
  • адрес начала таблицы страниц,
  • бит присутствия (P) таблицы страниц в оперативной памяти,
  • бит разрешения чтения/записи (R/W),
  • бит защиты страницы (пользователь/супервизор (U/S)) и некоторые другие атрибуты.
После получения из выбранного элемента КТС начального адреса таблицы страниц происходит обращение к ТС. В выбранной таблице страниц находится элемент, номер которого определяется разрядами А21-А12 линейного адреса. Структура элемента таблицы страниц аналогична структуре элемента КТС. Элемент ТС в соответствующем поле содержит адрес начала требуемой физической страницы и другие атрибуты, аналогичные элементу КТС. При P=0 возникает прерывание, необходимая страница подкачивается в ОП, ее адрес заносится в соответствующий элемент ТС, и команда выполняется повторно. Сокращение потерь времени при использовании сегментно-страничной организации памяти в персональной ЭВМ Преобразование логического адреса в физический при сегментно-страничной организации памяти требует, как минимум, трех обращений к системным таблицам, расположенным в оперативной памяти (таблице дескрипторов, КТС и ТС). Это может привести к существенному снижению производительности компьютера. Механизм сокращения потерь времени на такое преобразование основывается на том факте, что изменение состояния сегментных регистров производится относительно редко, например, при переключении ЭВМ на новую задачу, а новое страничное преобразование требуется лишь при выходе программы за пределы загруженной в оперативную память страницы. При сегментном преобразовании адреса после первого считывания дескриптора из таблицы дескрипторов, расположенной в оперативной памяти (например, после изменения состояния сегментного регистра при переключении на новую задачу), он запоминается в программно-недоступных ("теневых") регистрах микропроцессора (рис. 4.6). При последующих обращениях к данному сегменту используется дескриптор из "теневого" регистра без обращения к ОП. Поэтому на его вызов требуется минимальное время. Так как состояние сегментных регистров меняется относительно редко, то такой подход приводит к значительной экономии времени при сегментном преобразовании адреса. Рис. 4.6. Сохранение дескрипторов сегментов в "теневых" регистрах микропроцессора При страничном преобразовании номера виртуальной страницы в номер физической страницы используется кэш-буфер ассоциативной трансляции (TLB), содержащий физические адреса 32-х наиболее активно используемых страниц (рис. 4.7) и расположенный непосредственно в микропроцессоре. Рис. 4.7. Формат буфера ассоциативной трансляции адреса страницы Номер виртуальной страницы представляет собой старшие 20 разрядов линейного адреса, полученного при сегментном преобразовании (А31 - А12). По младшим разрядам (А14 - А12) этого номера выбирается блок в буфере ассоциативной трансляции. Содержимое поля тэгов каждой из четырех строк этого блока ассоциативным образом (одновременно) сравнивается с разрядами (А31 - А15) линейного адреса. Если значения для одной из строк выбранного блока совпали, значит, номер этой виртуальной страницы уже преобразовывался в номер физической страницы и результат этого преобразования находится в найденной строке TLB. Если сравнение не было успешным, то преобразование номера виртуальной страницы в номер физической проходит обычным образом через обращения к каталогу таблиц страниц и к таблице страниц, а полученное значение заносится в TLB. При этом в поле тэгов заносятся старшие 17 разрядов линейного адреса этой страницы (A31-A15). Если нет свободной строки в блоке, определяемом разрядами А14 - А12 линейного адреса, то из блока вытесняется строка, информация в которой дольше всего не использовалась (механизм LRU).
 
 
Раздел 5 Система прерываний Тема 5.1 Организация обработки прерываний в ЭВМ Цель: Рассмотреть основные вопросы, связанные с организацией работы ЭВМ при обработке прерываний, особенности системы прерываний в персональной ЭВМ.
Прерывание - это прекращение выполнения текущей команды или текущей последовательности команд для обработки некоторого события специальной программой - обработчиком прерывания, с последующим возвратом к выполнению прерванной программы. Событие может быть вызвано особой ситуацией, сложившейся при выполнении программы, или сигналом от внешнего устройства. Прерывание используется для быстрой реакции процессора на особые ситуации, возникающие при выполнении программы и взаимодействии с внешними устройствами. Механизм прерывания обеспечивается соответствующими аппаратно-программными средствами компьютера. Любая особая ситуация, вызывающая прерывание, сопровождается сигналом, называемым запросом прерывания (ЗП). Запросы прерываний от внешних устройств поступают в процессор по специальным линиям, а запросы, возникающие в процессе выполнения программы, поступают непосредственно изнутри микропроцессора. Механизмы обработки прерываний обоих типов схожи. Рассмотрим функционирование компьютера при появлении сигнала запроса прерывания, опираясь в основном на обработку аппаратных прерываний (рис. 5.1). Рис. 5.1. Выполнение прерывания в компьютере: tр - время реакции процессора на запрос прерывания; tс - время сохранения состояния прерываемой программы и вызова обработчика прерывания; tв - время восстановления прерванной программы После появления сигнала запроса прерывания ЭВМ переходит к выполнению программы - обработчика прерывания. Обработчик выполняет те действия, которые необходимы в связи с возникшей особой ситуацией. Например, такой ситуацией может быть нажатие клавиши на клавиатуре компьютера. Тогда обработчик должен передать код нажатой клавиши из контроллера клавиатуры в процессор и, возможно, проанализировать этот код. По окончании работы обработчика управление передается прерванной программе. Время реакции - это время между появлением сигнала запроса прерывания и началом выполнения прерывающей программы (обработчика прерывания) в том случае, если данное прерывание разрешено к обслуживанию. Время реакции зависит от момента, когда процессор определяет факт наличия запроса прерывания. Опрос запросов прерываний может проводиться либо по окончании выполнения очередного этапа команды (например, считывание команды, считывание первого операнда и т.д.), либо после завершения каждой команды программы. Первый подход обеспечивает более быструю реакцию, но при этом необходимо при переходе к обработчику прерывания сохранять большой объем информации о прерываемой программе, включающей состояние буферных регистров процессора, номера завершившегося этапа и т.д. При возврате из обработчика также необходимо выполнить большой объем работы по восстановлению состояния процессора. Во втором случае время реакции может быть достаточно большим. Однако при переходе к обработчику прерывания требуется запоминание минимального контекста прерываемой программы (обычно это счетчик команд и регистр флагов). В настоящее время в компьютерах чаще используется распознавание запроса прерывания после завершения очередной команды. Время реакции определяется для запроса с наивысшим приоритетом. Глубина прерывания - максимальное число программ, которые могут прерывать друг друга. Глубина прерывания обычно совпадает с числом уровней приоритетов, распознаваемых системой прерываний. Работа системы прерываний при различной глубине прерываний (n) представлена на рис. 5.2. Здесь предполагается, что с увеличением номера запроса прерывания увеличивается его приоритет. Рис. 5.2. Работа системы прерываний при различной глубине прерываний Без учета времени реакции, а также времени запоминания и времени восстановления: t11+t12=t1,t21+t22=t2. Прерывания делятся на аппаратные и программные [[4]] Аппаратныепрерывания используются для организации взаимодействия с внешними устройствами. Запросы аппаратных прерываний поступают на специальные входы микропроцессора. Они бывают:
  1. маскируемые, которые могут быть замаскированы программными средствами компьютера;
  2. немаскируемые, запрос от которых таким образом замаскирован быть не может.
Программныепрерывания вызываются следующими ситуациями:
  1. особый случай, возникший при выполнении команды и препятствующий нормальному продолжению программы (переполнение, нарушение защиты памяти, отсутствие нужной страницы в оперативной памяти и т.п.);
  2. наличие в программе специальной команды прерывания INT n, используемой обычно программистом при обращениях к специальным функциям операционной системы для ввода-вывода информации.
Каждому запросу прерывания в компьютере присваивается свой номер (тип прерывания), используемый для определения адреса обработчика прерывания. При поступлении запроса прерывания компьютер выполняет следующую последовательность действий:
  1. определение наиболее приоритетного незамаскированного запроса на прерывание (если одновременно поступило несколько запросов);
  2. определение типа выбранного запроса;
  3. сохранение текущего состояния счетчика команд и регистра флагов;
  4. определение адреса обработчика прерывания по типу прерывания и передача управления первой команде этого обработчика;
  5. выполнение программы - обработчика прерывания;
  6. восстановление сохраненных значений счетчика команд и регистра флагов прерванной программы;
  7. продолжение выполнения прерванной программы.
Этапы 1-4 выполняются аппаратными средствами ЭВМ автоматически при появлении запроса прерывания. Этап 6 также выполняется аппаратно по команде возврата из обработчика прерывания. Задача программиста - составить программу - обработчик прерывания, которая выполняла бы действия, связанные с появлением запроса данного типа, и поместить адрес начала этой программы в специальной таблице адресов прерываний. Программа-обработчик, как правило, должна начинаться с сохранения состояния тех регистров процессора, которые будут ею изменяться, и заканчиваться восстановлением состояния этих регистров. Программа-обработчик должна завершаться специальной командой, указывающей процессору на необходимость возврата в прерванную программу. Распознавание наличия сигналов запроса прерывания и определение наиболее приоритетного из них может проводиться различными методами. Рассмотрим один из них. Цепочечная однотактная система определения приоритета запроса прерывания На 5.3 приведена схема, обеспечивающая получение номера наиболее приоритетного запроса прерывания из присутствующих в компьютере на момент подачи сигнала опроса ("дейзи-цепочка") [[7]] Данная схема используется для анализа запросов аппаратных прерываний. Приоритет запросов прерываний (ЗПi) уменьшается с уменьшением номера запроса. В тот момент, когда компьютер должен определить наличие и приоритет внешнего аппаратного прерывания (обычно после окончания выполнения каждой команды), процессор выдает сигнал опроса. Если на входе ЗП3 присутствует сигнал высокого уровня (есть запрос), то на элементе 11 формируется общий сигнал наличия запроса прерывания и дальнейшее прохождение сигнала опроса блокируется. Если ЗП3=0, то анализируется сигнал ЗП2 и так далее. На шифраторе (элемент 12) формируется номер поступившего запроса прерывания. Этот номер передается в процессор лишь при наличии общего сигнала запроса прерывания. Такая структура позволяет быстро анализировать наличие сигнала запроса прерывания и определять наиболее приоритетный запрос из нескольких присутствующих в данный момент. Распределение приоритетов запросов прерываний внешних устройств осуществляется путем их физической коммутации по отношению к процессору. Указание приоритетов - жесткое и не может быть программно изменено. Изменение приоритетов возможно только путем физической перекоммутации устройств. Рис. 5.3. Схема определения номера наиболее приоритетного запроса прерывания Обработка прерываний в персональной ЭВМ Микропроцессоры типа х86 имеют два входа запросов внешних аппаратных прерываний:
  • NMI - немаскируемое прерывание, используется обычно для запросов прерываний по нарушению питания;
  • INT - маскируемое прерывание, запрос от которого можно программным образом замаскировать путем сброса флага IF в регистре флагов.
Рис. 5.4. Структура контроллера приоритетных прерываний Единственный вход запроса маскируемых прерываний микропроцессора не позволяет подключить к нему напрямую сигналы запросов от большого числа различных внешних устройств, которые входят в состав современного компьютера: таймера, клавиатуры, "мыши", принтера, сетевой карты и т.д. Для их подключения к одному входу INT микропроцессора используется контроллер приоритетных прерываний (рис. 5.4). Его функции:
  • восприятие и фиксация запросов прерываний от внешних устройств;
  • определение незамаскированных запросов среди поступивших запросов;
  • проведение арбитража: выделение наиболее приоритетного запроса из незамаскированных запросов в соответствии с установленным механизмом назначения приоритетов;
  • сравнение приоритета выделенного запроса с приоритетом запроса, который в данный момент может обрабатываться в микропроцессоре, формирование сигнала запроса на вход INT микропроцессора в случае, если приоритет нового запроса выше;
  • передача в микропроцессор по шине данных типа прерывания, выбранного в процессе арбитража, для запуска соответствующей программы - обработчика прерывания; это действие выполняется по сигналу разрешения прерывания INTA от микропроцессора, который выдается в случае, если прерывания в регистре флагов микропроцессора не замаскированы (IF=1).
Переход к соответствующему обработчику прерывания осуществляется (в реальном режиме работы микропроцессора) посредством таблицы векторов прерываний. Эта таблица (рис. 5.5) располагается в самых младших адресах оперативной памяти, имеет объем 1 Кбайт и содержит значения сегментного регистра команд (CS) и указателя команд (IP) для 256 обработчиков прерываний. Рис. 5.5. Структура таблицы векторов прерываний Обращение к элементам таблицы осуществляется по 8-разрядному коду - типу прерывания (таблица 5.1).
Таблица 5.1.
Тип прерывания Источник прерывания
  Деление на 0
  Пошаговый режим выполнения программы
  Запрос по входу NMI
· · ·
  Запрос по входу IRQ0 (системный таймер)
  Запрос по входу IRQ1 (контроллер клавиатуры)
· · ·
  Отсутствие сегмента в оперативной памяти
· · ·
  Пользовательское прерывание

Различные источники задают тип прерывания по-разному:

  • программные прерывания вводят его изнутри процессора или содержат его в номере команды INT n;
  • аппаратные маскируемые прерывания вводят его от контроллера приоритетных прерываний по шине данных;
  • немаскируемому аппаратному прерыванию назначен тип 2.

 


 

 

Раздел 6 Мультипрограммный режим работы ЭВМ
Тема 6.1 Организация работы мультипрограммных ЭВМ ЦельРассмотреть основные понятия мультипрограммного режима работы ЭВМ, аппаратные и программные средства, обеспечивающие работу ЭВМ в этом режиме, показатели, характеризующие мультипрограммный режим работы, и их зависимость от коэффициента мультипрограммирования.
Основные характеристики мультипрограммного режима работы ЭВМ Мультипрограммным режимом работы (многозадачностью) называется такой способ организации работы системы, при котором в ее памяти одновременно содержатся программы и данные для выполнения нескольких процессов обработки информации (задач) [[4]]. При этом должна обеспечиваться взаимная защита программ и данных, относящихся к различным задачам, а также возможность перехода от выполнения одной задачи к другой (переключение задач). Мультипрограммирование позволяет повысить производительность работы ЭВМ за счет более эффективного использования ее ресурсов. Базовыми понятиями мультипрограммного режима функционирования ЭВМ являются процесс и ресурс [[12]] В строгом понимании процесс - это система действий, реализующая определенную функцию в вычислительной системе и оформленная так, что управляющая программа вычислительной системы может перераспределять ресурсы этой системы в целях обеспечения мультипрограммирования. То есть процесс - это некоторая деятельность, связанная с исполнением программы на процессоре. Процесс может находиться в следующих состояниях:
  • порождение - подготавливаются условия для первого исполнения на процессоре;
  • активное состояние - исполнение программы на центральном процессоре;
  • готовность (Ready) - программа не исполняется, но для исполнения предоставлены все необходимые в текущий момент ресурсы, кроме центрального процессора;
  • исполнение программы на каком-либо другом устройстве компьютера, например, устройстве ввода/вывода, имеющем собственные средства управления;
  • ожидание (Wait) - программа не исполняется по причине занятости какого-либо ресурса;
  • окончание - нормальное или аварийное завершение исполнения программы, после которого процессор и другие ресурсы ей не предоставляются.
Время между порождением и окончанием процесса называется интервалом существования процесса. Понятие ресурса строго не определено. Будем считать, что всякий потребляемый объект (независимо от формы его существования), обладающий некоторой практической ценностью для потребителя, является ресурсом [12]. Ресурсы различаются по запасу выделяемых единиц ресурса и бывают в этом смысле исчерпаемыми и неисчерпаемыми. К исчерпаемым ресурсам относится, например, центральный процессор. В качестве неисчерпаемого ресурса можно представить, например, память, выделяемую программе, если рассматривать ее как совокупность всех имеющихся в компьютере запоминающих устройств. В то же время, запоминающее устройство, состоящее только из оперативной памяти с единственным трактом записи/считывания, представляет собой исчерпаемый ресурс. Исчерпаемость ресурса, как правило, приводит к конфликтам среди потребителей этого ресурса. Для регулирования конфликтов ресурсы должны распределяться между потребителями по каким-то правилам, в наибольшей степени их удовлетворяющим. Основные черты мультипрограммного режима:
  • в оперативной памяти находятся несколько пользовательских программ в состояниях активности, ожидания или готовности;
  • время работы процессора разделяется между программами, находящимися в памяти в состоянии готовности;
  • параллельно с работой процессора происходит подготовка и обмен с несколькими устройствами ввода-вывода.
Мультипрограммирование предназначено для повышения пропускной способности вычислительной системы путем более равномерной и полной загрузки всего ее оборудования, в первую очередь процессора. При этом скорость работы самого процессора и номинальная производительность ЭВМ не зависят от мультипрограммирования. Мультипрограммный режим имеет в ЭВМ аппаратную и программную поддержку:
  • аппаратная:
    • контроллеры устройств ввода-вывода, которые могут работать параллельно с процессором;
    • система прерывания;
    • аппаратные средства системы защиты программ и данных в микропроцессоре;
    • и т.п.;
  • программная:
    • мультизадачная операционная система (ОС);
    • системные программы, управляющие работой устройств ввода-вывода и специализированных средств вычислительной системы.
Управляющая программа (ОС), реализуя мультипрограммный режим, должна распределять (в том числе динамически) ресурсы системы (время процессора, оперативную и внешнюю память, устройства ввода-вывода и т.д.) между параллельно выполняемыми программами, чтобы обеспечить увеличение пропускной способности компьютера с учетом ограничений на ресурсы и требований по срочности выполнения отдельных программ. Производительность мультипрограммной ЭВМ оценивается количеством задач, выполненных в единицу времени (пропускная способность) и временем выполнения каждой программы Тi. При анализе работы ЭВМ важно определить степень использования ее ресурсов. Для этого широко применяются следующие
<== предыдущая лекция | следующая лекция ==>
Синхронизатор | 
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 2747; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.05 сек.