Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Цветовая модель

Мы смотрим на предметы и, характеризуя их, говорим примерно следующее: он большой, мягкий, светло-голубого цвета. При описании чего-либо в большинстве случаев упоминается цвет, так как он несет огромное количество информации. На самом деле тело не имеет определенного цвета. Само понятие цвета тесно связано с тем, как человек (человеческий взгляд) воспринимает свет; можно сказать, что цвет зарождается в глазу.

Цвет - чрезвычайно сложная проблема, как для физики, так и для физиологии, т.к. он имеет как психофизиологическую, так и физическую природу. Восприятие цвета зависит от физических свойств света, т. е. электромагнитной энергии, от его взаимодействия с физическими веществами, а также от их интерпретации зрительной системой человека. Другими словами, цвет предмета зависит не только от самого предмета, но также и от источника света, освещающего предмет, и от системы человеческого видения. Более того, одни предметы отражают свет (доска, бумага), а другие его пропускают (стекло, вода). Если поверхность, которая отражает только синий свет, освещается красным светом, она будет казаться черной. Аналогично, если источник зеленого света рассматривать через стекло, пропускающее только красный свет, он тоже покажется черным.

Самым простым является ахроматический цвет, т.е. такой, какой мы видим на экране черно-белого телевизора. При этом белыми выглядят объекты, ахроматически отражающие более 80% света белого источника, а черными - менее 3%. Единственным атрибутом такого цвета является интенсивность или количество. С интенсивностью можно сопоставить скалярную величину, определяя черное, как 0, а белое как 1.

Если воспринимаемый свет содержит длины волн в произвольных неравных количествах, то он называется хроматическим.

При субъективном описании такого цвета обычно используют три величины: цветовой тон, насыщенность и светлота. Цветовой тон позволяет различать цвета, такие как красный, зеленый, желтый и т.д. (это основная цветовая характеристика). Насыщенность характеризует чистоту, т.е. степень ослабления (разбавления, осветления) данного цвета белым светом, и позволяет отличать розовый цвет от красного, изумрудный от ярко-зеленого и т. д. Другими словами, по насыщенности судят о том, насколько мягким или резким кажется цвет. Светлота отражает представление об интенсивности, как о факторе, не зависящем от цветового тона и насыщенности (интенсивность цвета).

Обычно встречаются не чистые монохроматические цвета, а их смеси. В основе трехкомпонентной теории света лежит предположение о том, что в центральной части сетчатки глаза находятся три типа чувствительных к цвету колбочек.

Первый воспринимает зеленый цвет, второй - красный, а третий - синий цвет. Относительная чувствительность глаза максимальна для зеленого цвета и минимальна для синего. Если на все три типа колбочек воздействует одинаковый уровень энергетической яркости, то свет кажется белым. Ощущение белого цвета можно получить, смешивая любые три цвета, если ни один из них не является линейной комбинацией двух других. Такие цвета называют основными.

Человеческий глаз способен различать около 350 000 различных цветов. Это число получено в результате многочисленных опытов. Четко различимы примерно 128 цветовых тонов. Если меняется только насыщенность, то зрительная система способна выделить уже не так много цветов: мы можем различить от 16 (для желтого) до 23 (для красного и фиолетового) таких цветов.

Таким образом, для характеристики цвета используются следующие атрибуты:

Цветовой тон. Можно определить преобладающей длиной волны в спектре излучения. Цветовой тон позволяет отличать один цвет от другого - например, зеленый от красного, желтого и других.

Яркость. Определяется энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света.

Насыщенность или чистота тона. Выражается долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует. Если, например, к чистому красному цвету добавить в определенной пропорции белый цвет, то получится светлый бледно-красный цвет.

Указанные три атрибута позволяют описать все цвета и оттенки. То, что атрибутов именно три, является одним из проявлений трехмерных свойств цвета.

Большинство людей различают цвета, а те, кто занимается компьютерной графикой, должны четко чувствовать разницу не только в цветах, но и в тончайших оттенках. Это очень важно, так как именно цвет несет в себе большое количество информации, которая ничуть не уступает в важности ни форме, ни массе, ни другим параметрам, определяющим каждое тело.

Факторы, влияющие на внешний вид конкретного цвета:

·источник света;

·информация об окружающих предметах;

·ваши глаза;

Правильно подобранные цвета могут, как привлечь внимание к желаемому изображению, так и оттолкнуть от него. Это объясняется тем, что в зависимости от того, какой цвет видит человек, у него возникают различные эмоции, которые подсознательно формируют первое впечатление от видимого объекта.

Цвет в компьютерной графике нужен для того, чтобы:

нести в себе определенную информацию об объектах. Например, летом деревья зеленые, осенью - желтые. На черно-белой фотографии определить пору года практически невозможно, если на это не указывают какие-либо другие дополнительные факты.

цвет необходим также для того, чтобы различать объекты.

с его помощью можно вывести одни части изображения на первый план, другие же увести в фон, то есть акцентировать внимание на важном - композиционном - центре.

без увеличения размера при помощи цвета можно передать некоторые детали изображения.

в двумерной графике, а именно таковую мы видим на мониторе, так как он не обладает третьим измерением, именно при помощи цвета, точнее оттенков, имитируется (передается) объем.

цвет используется для привлечения внимания зрителя, создания красочного и интересного изображения.

Любое компьютерное изображение характеризуется, кроме геометрических размеров и разрешения (количество точек на один дюйм), максимальным числом цветов, которые могут быть в нем использованы. Максимальное количество цветов, которое может быть использовано в изображении данного типа, называется глубиной цвета. Кроме полноцветных, существуют типы изображений с различной глубиной цвета - черно-белые штриховые, в оттенках серого, с индексированным цветом. Некоторые типы изображений имеют одинаковую глубину цвета, но различаются по цветовой модели.

В основе одной из наиболее распространенных цветовых моделей, называемой RGB моделью, лежит воспроизведение любого цвета путем сложения трех основных цветов: красного (Red), зеленого (Green) и синего (Blue). Каждый канал - R, G или B имеется свой отдельный параметр, указывающий на количество соответствующей компоненты в конечном цвете. Например: (255, 64, 23) – цвет, содержащий сильный красный компонент, немного зелёного и совсем немного синего. Естественно, что этот режим наиболее подходит для передачи богатства красок окружающей природы. Но он требует и больших расходов, так как глубина цвета тут наибольшая – 3 канала по 8 бит на каждый, что дает в общей сложности 24 бита.

Поскольку в RGB модели происходит сложение цветов, то она называется аддитивной (additive). Именно на такой модели построено воспроизведение цвета современными мониторами.

Модель CMY является субтрактивной (основанной на вычитании) цветовой моделью. Как уже говорилось, в CMY-модели описываются цвета на белом носителе, т. е. краситель, нанесенный на белую бумагу, вычитает часть спектра из падающего белого света. Например, на поверхность бумаги нанесли голубой (Cyan) краситель. Теперь красный свет, падающий на бумагу, полностью поглощается. Таким образом, голубой носитель вычитает красный свет из падающего белого.

Такая модель наиболее точно описывает цвета при выводе изображения на печать, т. е. в полиграфии.

Поскольку для воспроизведения черного цвета требуется нанесение трех красителей, а расходные материалы дороги, использование CMY-модели является не эффективным. Дополнительный фактор, не добавляющий привлекательности CMY-модели, – это появление нежелательных визуальных эффектов, возникающих за счет того, что при выводе точки три базовые цвета могут ложиться с небольшими отклонениями. Поэтому к базовым трем цветам CMY-модели добавляют черный (blacK) и получают новую цветовую модель CMYK.

Цветовая модель Lab, была специально разработана для получения предсказуемых цветов, т.е. она является аппаратно-независимой и соответствующей особенностям восприятия цвета глазом человека.

Lab является трёхканальной моделью. Цвет в ней определяется светлотой (яркостью) и двумя хроматическими компонентами: параметром a, изменяющимся в диапазоне от зелёного до красного и параметром b, изменяющимся в диапазоне от синего до жёлтого (рис.6). Т.к. яркость в этой модели полностью отделена от цвета, это делает модель удобной для регулирования контраста, резкости и других тоновых характеристик. Цветовой охват Lab, очень широк: он включает в себя RGB и CMYK, и другие цвета, непредставимые в двух предыдущих моделях. На рис.1 ему соответствует область A. Очевидно, что при конвертации в Lab все цвета сохраняются. Цветовая модель Lab очень важна для полиграфии. Именно она используется при переводе изображения из одной цветовой модели в другую, между устройствами и даже между различными платформами. Кроме того именно в этой модели удобнее всего проводить некоторые операции по улучшению качества изображения.

HSB - модель, которая в принципе является аналогом RGB, она основана на её цветах, но отличается системой координат. Любой цвет в этой модели характеризуется тоном (Hue), насыщенностью (Saturation) и яркостью (Brightness). Тон - это собственно цвет. Насыщенность - процент добавленной к цвету белой краски. Яркость - процент добавленной чёрной краски. Итак, HSB - трёхканальная цветовая модель. Любой цвет в HSB получается добавлением к основному спектру чёрной или белой, т.е. фактически серой краски. Модель HSB не является строгой математической моделью. Описание цветов в ней не соответствует цветам, воспринимаемых глазом. Дело в том, что глаз воспринимает цвета, как имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В HSB все цвета основного спектра (канала тона) считаются обладающими 100%-й яркостью. На самом деле это не соответствует действительности. Хотя модель HSB декларирована как аппаратно-независимая, на самом деле в её основе лежит RGB. В любом случае HSB конвертируется в RGB для отображения на мониторе и в CMYK для печати,а любая конвертация не обходится без потерь.
В этом материале были рассмотрены основные цветовые модели, используемые большинством графических программ. Примером программы, в которой Вы сможете поэкспериментировать со всеми четырмя моделями является Photoshop. Надеюсь, что прочитав этот материал, Вы открыли для себя новую интересную информацию.
<== предыдущая лекция | следующая лекция ==>
Фоновые условные знаки | Цвет и тон окраски, техника окрашивания фоновых условных знаков
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 533; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.