КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тема 3. Характеристики процессора
Говоря о внутренней архитектуре процессора, не следует забывать и о его характеристиках, главная из которых – производительность, то есть число итераций, выполняемых за одну секунду. Производительность, в свою очередь, характеризуется радом параметров: 1. степенью интеграции; 2. внутренней и внешней разрядностью обработки данных; 3. тактовой частотой; 4. памятью, к которой может адресоваться процессор; 5. объемом и устройством кэш-памяти. Степень интеграции процессора – число транзисторов, которые могут уместиться на микросхеме.
Внутренняя разрядность данных – количество бит, которое процессор может обрабатывать одновременно. Особенно важна эта характеристика для арифметических команд, выполняемых внутри ЦП. Внешняя разрядность данных – разрядность системной шины. Тактовая частота современных процессоров превышает 300 МГц, тактовая частота системной шины составляет лишь 66 МГц. В самых последних моделях материнских плат – порядка 100 и 133 МГц, поэтому разрядность системной шины важна для эффективной работы ЦП. Тактовая частота – количество циклов (или машинных тактов) в секунду, вырабатываемых генератором тактовых сигналов. Современные персональные компьютеры имеют несколько тактовых генераторов, работающих синхронно на различных частотах. Говоря о тактовой частоте системы, имеют в виду тактовую частоту системной шины. Характеристики различных процессоров Табл. 5.1.
Ширина ША, или количество ячеек памяти, к которым может адресоваться процессор. Ширина ШД, или количество бит данных, которые могут быть одновременно переданы по ШД. Тема 4. Назначение и Классификация ЦУУ Центральное устройство управления — это комплекс средств автоматического управления процессом передачи и обработки информации. ЦУУ вырабатывает управляющие сигналы (УС), необходимые для выполнения всех операций, предусмотренных системой команд, а также координирует работу всех узлов и блоков ЭВМ. В связи с этим можно считать ЦУУ преобразователем первичной командной информации, представленной программой решения задачи, во вторичную командную информацию, представляемую управляющими сигналами. В общем случае ЦУУ формирует управляющие сигналы для реализации следующих функций: 1. выборки из памяти кода очередной команды; 2. расшифровки кода операции и признаков выбранной команды; 3. выборки операндов и выполнения машинной операции; 4. обеспечения прерываний при выполнении команд; 5. формирования адреса следующей команды; 6. учета состояний других устройств машины; 7. инициализации работы контроллеров (каналов) ввода-вывода; 8. организации контроля работоспособности ЭВМ. К основным характеристикам ЦУУ следует отнести: 1. принцип формирования и развертывания временной последовательности управляющих сигналов; 2. способ построения цикла работы ЦУУ и ЭВМ в целом; 3. общая организация управления ЭВМ; 4. способ синхронизации узлов и блоков ЭВМ. По принципу формирования и развертывания временной последовательности УС различают ЦУУ: 1. аппаратного (схемного) типа, выполненным в виде управляющего автомата с жесткой логикой, в котором функции переходов и выходов реализуются набором логических элементов, а требуемое количество состояний автомата задается множеством запоминающих элементов; 2. микропрограммного типа, в которых блок управления реализован как блок микропрограммного управления. По способу построения рабочего цикла различают ЦУУ: 1. с прямым циклом, На первом этапе производится выборка из памяти команды, а затем следуют этапы выполнения машинной операции. 2. с обращенным циклом, В первую очередь выдаются управляющие сигналы для выполнения машинной операции по коду команды, поступившей в ЦУУ на предыдущем цикле (предвыборка команд), а затем из памяти выбирается код команды, которая будет исполняться в следующем цикле. 3. с совмещением во времени циклов выполнения нескольких команд (конвейером команд). По способу синхронизации работы ЭВМ в зависимости от числа тактов в цикле выполнения команды различают ЦУУ: 1. с постоянным числом тактов; 2. с переменным числом тактов. В микропрограмме рабочего цикла выделяют общую и специальную части. К общей части относятся микрокоманды, исполняемые в цикле любой команды: выборка команды, анализ запросов на прерывание, формирование адреса следующей команды, анализ состояния процессора. Эти микрокоманды выполняются за постоянное число тактов. К специальной части относятся микрокоманды, по которым вырабатываются управляющие сигналы в зависимости от содержания операционной части исполняемой команды. В этом случае количество тактов будет переменным для различных команд. В современных ЭВМ с различной структурой используемых команд, число тактов зависит от формата выбираемой команды, структуры ее адресной части и длины операндов. По общей организации управление может быть: 1. централизованным Блок управления ЦУУ вырабатывает все УС микроопераций для всех команд, выполняемых процессором; 2. смешанным Применяются в процессорах, операционные и другие устройства которых имеют собственные узлы местного управления. Тогда блок управления ЦУУ, помимо сигналов микроопераций, вырабатывает так же сигналы для блоков местного управления; По принципу организации циклов различают ЦУУ: 1. синхронного типа, в которых время цикла может быть постоянным или переменным; 2. асинхронного типа, в которых продолжительность цикла определяется фактическими затратами времени на выполнение каждой операции. В этом случае необходимо вырабатывать сигналы об окончании операции; 3. смешанного типа, где частично реализуются оба предыдущих принципа организации циклов. ЛЕКЦИЯ 13. Глава 4. ПАМЯТЬ ЭВМ Память – один из блоков ЭВМ, состоящий из ЗУ и предназначенный для запоминания, хранения и выдачи информации (алгоритма обработки данных и самих данных). Основными характеристиками отдельных устройств памяти (запоминающих устройств) являются емкость памяти, быстродействие и стоимость хранения единицы информации (бита). Быстродействие (задержка) памяти определяется временем доступа и длительностью цикла памяти. Время доступа представляет собой промежуток времени между выдачей запроса на чтение и моментом поступления запрошенного слова из памяти. Длительность цикла памяти определяется минимальным временем между двумя последовательными обращениями к памяти. Требования к увеличению емкости и быстродействия памяти, а также к снижению ее стоимости являются противоречивыми. Чем больше быстродействие, тем технически труднее достигается и дороже обходится увеличение емкости памяти. Стоимость памяти составляет значительную часть общей стоимости ЭВМ. Как и большинство устройств ЭВМ, память имеет иерархическую структуру. Обобщённая модель такой структуры, отражающая многообразие ЗУ и их взаимодействие, представлена на рисунке 4.1. Все запоминающие устройства обладают различным быстродействием и емкостью. Чем выше уровень иерархии, тем выше быстродействие соответствующей памяти, но меньше её емкость. Рис. 4.1. Иерархическая структура памяти К самому высокому уровню - сверхоперативному - относятся регистры управляющих и операционных блоков процессора, сверхоперативная память, управляющая память, буферная память (кэш-память). На втором оперативном уровне, более низком, находится оперативная память (ОП), служащая для хранения активных программ и данных, то есть тех программ и данных, с которыми работает ЭВМ. На следующем более низком внешнем уровне размещается внешняя память. Местная память или регистровая память процессора. Входит в состав ЦП (регистры управляющих и операционных блоков процессора) и предназначена для временного хранения информации. Она имеет малую ёмкость и наибольшее быстродействие. Построена на базе регистров общего назначения. РОН конструктивно совмещены с процессором ЭВМ. Этот тип ЗУ используется для хранения управляющих и служебных кодов, а также информации, к которой наиболее часто обращается процессор при выполнении программы. Сверхоперативная память. Иногда в архитектуре ЭВМ регистровая память организуется в виде сверхоперативного ЗУ с прямой адресацией. Такая память имеет то же назначение как и РОН, служит для хранения операндов, данных и служебной информации, необходимой процессору. Управляющая память предназначена для хранения управляющих микропрограмм процессора (см. раздел Устройство управления микропрограммного типа). Выполнена в виде постоянного ЗУ (ПЗУ) или программируемого постоянного ЗУ (ППЗУ). В системах с микропрограммным способом обработки информации УП применяется для хранения однажды записанных микропрограмм, управляющих программ, констант и т.п. Буферная память. В функциональном отношении кэш-память рассматривается как буферное ЗУ, размещённое между основной (оперативной) памятью и процессором. Основное назначение кэш-памяти - кратковременное хранение и выдача активной информации процессору, что сокращает число обращений к основной памяти, скорость работы которой меньше, чем кэш-памяти. Кэш – память от английского cashe – тайник. Она не является программно доступной. Поэтому она оказывает влияние на производительность ЭВМ, но не влияет на программирование прикладных задач. В современных ЭВМ различают кэш первого и второго уровней. Кэш первого уровня интегрирована с блоком предварительной выборки команд и данных ЦП и служит, как правило, для хранения наиболее часто используемых команд. Кэш второго уровня служит буфером между ОП и процессором. В некоторых ЭВМ существует кэш память отдельно для команд и отдельно для данных. ОП (ОЗУ) служит для хранения информации, непосредственно участвующей в вычислительном процессе (происходящем в операционном устройстве - АЛУ). Из ОЗУ в процессор поступают коды и операнды, над которыми производятся предусмотренные программой операции, из процессора в ОЗУ направляются для хранения промежуточные и конечные результаты обработки информации. ОЗУ имеет сравнительно большую ёмкость и высокое быстродействие, однако меньшее, чем ЗУ сверхоперативного уровня. Внешняя память (ВнП) используется для хранения больших массивов информации в течении продолжительного времени. Обычно ВнП не имеет непосредственной связи с процессором. Обмен информацией носит групповой характер, что значительно сокращает время обмена. ВнП обладает сравнительно низким быстродействием (поиск информации). В качестве носителя используются магнитные диски (гибкие и жёсткие), лазерные диски(CD-room) и др. Рост производительности ЭВМ проявляется в первую очередь в увеличении скорости работы процессора. Быстродействие ОП также растет, но все время отстает от быстродействия аппаратных средств процессора потому, что одновременно происходит опережающий рост ее емкости, что делает более трудным уменьшение времени цикла работы памяти. Вследствие этого быстродействие ОП оказывается недостаточным для обеспечения требуемой производительности ЭВМ. Проявляется это в несоответствии пропускных способностей процессора и памяти. Для выравнивания их пропускных способностей и предназначена сверхоперативная буферная память небольшой емкости (как правило, не более 512 Кбайт) и повышенного быстродействия.
Дата добавления: 2014-01-20; Просмотров: 837; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |