![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Примитивный многочлен, его свойства
Разложение многочлена над полем рациональных чисел Свойство 4 f (x)= f (a 1)+(x - a 1) f (a 1, a 2)+…+(x - a 1)…(x - a k-1) f (a 1,…. a k)+ +(x - a 1)…(x - a k) f (x, a 1,…. a k) Доказательство. Из определения разности порядка k выразим разность меньшего порядка Определение 2.2Многочлен над кольцом целых чисел называется примитивным, если наибольший общий делитель его коэффициентов равен 1. Многочлен с рациональными коэффициентами единственным образом представляется в виде произведения положительного рационального числа и примитивного многочлена. Рациональное число называют содержанием многочлена. Теорема 2.10 Произведение примитивных многочленов есть примитивный многочлен. Доказательство проведём методом от противного. Пусть произведение двух примитивных многочленов Следствие 2.2. Если многочлен с целочисленными коэффициентами приводим над полем рациональных чисел, то он приводим над кольцом целых чисел. Доказательство. Разложим многочлен над полем рациональных чисел. Каждый множитель представим в виде произведения его содержания и примитивного многочлена. Произведение примитивных многочленов суть примитивный многочлен, поэтому произведение содержаний множителей равно содержанию исходного многочлена. Для завершения доказательства осталось заметить, что содержание исходного многочлена есть целое число. Таким образом, задача разложения многочлена на неприводимые множители над полем рациональных чисел сводится к аналогичной задаче над кольцом целых чисел.
Дата добавления: 2014-01-20; Просмотров: 855; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |