КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Построение обратной матрицы
Матрица элементарных преобразований Элементарные преобразования матрицы A, такие как перестановка строк; прибавление к одной строке другой строки, умноженной на число; умножение строки на число можно трактовать как умножение матрицы A слева на некоторую матрицу, соответствующую элементарному преобразованию. Выпишем некоторые такие матрицы с описанием элементарных преобразований. 1. Перестановка строк i и j эквивалентна умножению слева на матрицу, которая получается из единичной матрицы перестановкой i и j строк. 2. Умножение строки i на число a эквивалентно умножению слева на матрицу, отличающейся от единичной только одним элементом, стоящим на пересечении i строки и столбца и равного a. 3. Прибавление к i-ой строке j-ой, умноженной на число a равно сильно умножению слева матрицу, отличающейся от единичной только элементом, стоящим на пересечении i-ой строки и j-го столбца и равного a. Аналогично, преобразования над столбцами матрицы эквивалентны умножению справа на матрицы элементарных преобразований. Пусть A невырожденная матрица. Рассмотрим задачу построения обратной матрицы. Припишем справа к матрице A единичную матрицу. Элементарными преобразованиями строк добьемся, что бы на месте матрицы A располагалась единичная матрица. С точки зрения матричных операций получим равенство , где матрицы элементарных преобразований. Положим . Равенство равносильно равенствам и . Из этих равенств делаем вывод, что B – обратная матрицы к матрице A. Совершенно аналогично, если припишем единичную матрицу снизу к матрице A, а затем элементарными преобразованиями столбцов добьемся чтобы на месте матрицы A стояла единичная матрица, то на месте единичной матрицы будет стоять обратная к A матрица.
Дата добавления: 2014-01-20; Просмотров: 287; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |