![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Ранги матрицы
Задание прямой и плоскости в пространстве. Деление отрезка. Задачи. Опишем множество точек, лежащих на прямой l, проходящей через точки A, B. Если В зависимости от параметра Пусть A,B,C три точки не лежащие на одной прямой. Опишем множество точек плоскости
![]() Пусть система векторов Для иллюстрации приведённой теории решим следующую задачу: Доказать, что в произвольном тетраэдре, все отрезки соединяющие вершины с точкой пересечения медиан треугольника, образованного вершинами противоположной грани, пересекаются в одной точке и найти отношение, в котором делит эти отрезки точка пересечения. В начале решим вспомогательную задачу: выразить точку пересечения медиан треугольника через его вершины. Обозначим вершины треугольника через A,B,C. Векторы AB и AC выберем в качестве базиса. Тогда, точки имеют координаты A=(0,0), B=(1,0), C=(0,1). Обозначим середину отрезка [BC] через F. Точка F имеет координаты (1/2,1/2). Отрезок [AF] делится точкой пересечения медиан O в соотношении 2:1, следовательно, O=(1/3,1/3). Таким образом,
Для матрицы можно дать три определения ранга: 1. Столбцовый ранг - ранг системы столбцов. 2. Строчечный ранг - ранг системы строк. 3. Минорный ранг - Порядок наибольшего (по размеру) отличного от нуля минора. Теорема 7.11. Все ранги равны. Доказательство. Для доказательства достаточно показать равенство столбцового и минорного рангов. Действительно, при транспонировании матрицы минорный ранг не меняется, а столбцовый ранг становится строчечным. Первое доказательство. Воспользуемся критерием линейной независимости (Теорема 7.9). Второе доказательство. Пусть максимальный по порядку не нулевой минор расположен на пересечении строк с номерами Следствие 7.11. Ранг произведения матриц не превосходит ранга сомножителей. Доказательство. Пусть C=AB. По определению произведения матриц, строки матрицы C являются линейными комбинациями строк матрицы B и, значит,
Дата добавления: 2014-01-20; Просмотров: 647; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |