КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Функциональная структура экспертной системы
Лекция №2 Определение экспертной системы, как человеко-машинной системы, лучше всего сделать, указав, из каких блоков она состоит.
Рис. 1 Функциональная структура ЭС Как видно, она состоит из базы знаний, решающего блока, подсистемы общения, подсистемы объяснения и подсистемы накопления знаний. Через подсистему общения с ЭС связаны: 1. Конечный пользователь (КП) (непрограммирующий специалист в какой-либо области); 2. Эксперт (Э) - квалифицированный специалист в какой-либо области знаний, опыт которого намного превосходит знания и опыт рядового конечного пользователя и, наконец; 3. Инженер по знаниям (ИПЗ) – специалист знающий модели представления знаний и владеющий языками инженерии знаний. С экспертной системой на этапе наполнения знаний работают ИПЗ и Э, а на этапе эксплуатации и использования - КП. Знания, которыми должна быть заполнена ЭС, представляют собой знания I-го рода и знания II- го рода. Знания I-го рода - это общезначимые факты, явления, закономерности - истины, признанные в данной предметной области и зафиксированные в книгах, статьях, справочниках и т. п. Знания II- го рода - это эмпирические правила, эвристики, интуитивные соображения и факты, которые, как правило, не публикуются, но дают возможность опытному эксперту эффективно принимать решения даже в условиях неполных и противоречивых исходных данных. Знания в ЭС фиксируются в БЗ, которую можно разделить на интенсиональную и экстенсиональную части (собственно базу данных), (рис. 1). Важное значение в ЭС имеет подсистема объяснений - основное отличие ЭС от других диалоговых человеко-машинных систем. Подсистема объяснений отвечает на вопросы, “как” и “почему” конечный пользователь с помощью ЭС принял то или иное решение. Успех в реализации ЭС тем больше, чем выше удельный вес знаний I-го рода по отношению к знаниям II- го рода. При большом удельном весе знаний II- го рода возникают трудности следующего вида: эксперт не способен более или менее четко сформулировать правила принятия решений; эксперт просто не желает передавать кому-либо свои знания, методы и правила (он хочет сохранить за собой статус уникального специалиста); в исследуемой предметной области не находят подходящего эксперта. Определенным решением этих трудностей, а возможно и альтернативным подходом к построению ЭС является использование подсистемы накопления знаний, когда речь идет об автоматическом или полуавтоматическом формировании эмпирических зависимостей из неполных данных и данных, заданных экспериментально. В этом случае наряду со знаниями, которые сумел передать эксперт, подсистема накопления знаний должна быть способна из знаний I- го рода строить знания II- го рода, порождать теорию и затем выводить новые факты. Указанный подход основан на идеях индуктивного обобщения и машинном обучении. Наряду с БЗ основную функциональную нагрузку в ЭС несет решающий блок, состоящий из подсистемы логического вывода и планировщика. Форма механизма вывода зависит от организации БЗ и типа схемы управления, направляющей процесс вывода в ней, а это в свою очередь, от сущности проблемы и знаний. Обычно выделяют два базовых механизма вывода - вывод в прямом направлении (прямая цепочка рассуждении) и вывод в обратном направлении (обратная цепочка рассуждений).
Дата добавления: 2014-01-20; Просмотров: 920; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |