КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Числовые характеристики показательного распределения
Пусть непрерывная случайная величина X распределена по показательному закону . Найдем математическое ожидание: . Интегрируя по частям, получим . (12.2) Таким образом, математическое ожидание показательного распределения равно обратной величине параметра X. Найдем дисперсию: . Интегрируя по частям, получим . Следовательно, . Найдем среднее квадратическое отклонение, для чего извлечем квадратный корень из дисперсии: . (12.3) Сравнивая (12.2) и (12.3), заключаем, что , т.е. математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой. Пример. Непрерывная случайная величина X распределена по показательному закону
Найти математическое ожидание, среднее квадратическое отклонение и дисперсию X. Решение. По условию, l = 5. Следовательно, ; . Замечание 1. Пусть на практике изучается показательно распределенная случайная величина, причем параметр l неизвестен. Если математическое ожидание также неизвестно, то находят его оценку (приближенное значение), в качестве которой принимают выборочную среднюю . Тогда приближенное значение параметра l находят с помощью равенства . Замечание 2. Допустим, имеются основания предположить, что изучаемая на практике случайная величина имеет показательное распределение. Для того чтсбы проверить эту гипотезу, находят оценки математического ожидания и среднего квадратического отклонения, т.е. находят выборочную среднюю и выборочное среднее квадратическое отклонение. Математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой, поэтому их оценки должны различаться незначительно. Если оценки окажутся близкими одна к другой, то данные наблюдений подтверждают гипотезу о показательном распределении изучаемой величины; если же оценки различаются существенно, то гипотезу следует отвергнуть. Показательное распределение широко применяется в приложениях, в частности в теории надежности, одним из основных понятий которой является функция надежности.
Дата добавления: 2014-01-20; Просмотров: 358; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |