Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Физические принципы функционирования современных датчиков




Основные принципы функционирования современных датчиков и их особенности приведены в табл. 2.

 

Таблица 2. Основные принципы функционирования современных датчиков

 

Эффект или явление Преобразование Сущность
Пироэлектрический эффект Температура - электричество Возникновение электрозарядов на гранях кристаллов при повышении температуры
Термоэлектрический эффект Тепловая энергия - электроны Испускание электронов при нагревании металла в вакууме
Электротермический эффект Пельтье Электричество - тепловая энергия Поглощение (генерация) тепловой энергии при электротоке в цепи с биметаллическими соединениями
Электротермический эффект Томсона Температура и электричество - тепловая энергия Поглощение (генерация) тепловой энергии при разных температурах участков в однородной цепи
Теплопроводность Тепловая энергия - изменение физических свойств Переход тепла внутри объекта в область с более низкой температурой
Тепловое излучение Тепловая энергия - инфракрасные лучи Оптическое излучение при повышении температуры объекта
Эффект Зеебека Температура - электричество Возникновение ЭДС в цепи с биметаллическими соединениями при разной температуре слоев
Фотогальванический эффект Свет - электричество Возникновение ЭДС в облучаемом светом p-n переходе
Эффект фотопроводимости Свет - электросопротивление Изменение электросопротивления полупроводника при его облучении светом
Эффект Зеемана Свет, магнетизм - спектр Расщепление спектральных линий при прохождении света в магнитном поле
Эффект Рамана(комбинационное рассеяние света) Свет - свет Возникновение в веществе светового излучения, отличного по спектру от исходного монохроматического
Эффект Поккельса Свет и электричество - свет Расщепление светового луча на обыкновенный и необыкновенный при прохождении через пьезокристалл с приложенным к нему электронапряжением
Эффект Керра Свет и электричество - свет Расщепление светового луча на обыкновенный и необыкновенный в изотопном веществе с приложенным к нему электронапряжением
Эффект Фарадея Свет и магнетизм - свет Поворот плоскости поляризации светового луча при прохождении через парамагнитное вещество
Эффект Холла Магнетизм и электричество - электричество Возникновение разности потенциалов на гранях твердого тела при пропускании через него электротока и приложении магнитного поля
Эффект Доплера Звук, свет - частота Изменение частоты при взаимном перемещении объектов
Магнитосопротивление Магнетизм и электричество - электросопротивление Увеличение электрического сопротивления твердого тела в магнитном поле
Магнитострикция Магнетизм - деформация Деформация ферромагнитного тела в магнитном поле
Пьезоэлектрический эффект Давление - электричество Возникновение разности потенциалов на гранях сегнетоэлектрика, находящегося под давлением

 

Анализ технических характеристик современных датчиков показывает, что по мере внедрения микропроцессоров ДТС становились все более интеллектуальными (обладающими искусственным интеллектом). В настоящее время хорошие интеллектуальные возможности имеют так называемые датчики с двойной технологией, т.е. комбинированные датчики. Эти возможности можно проиллюстрировать на примере микропроцессорного охранного датчика двойной технологии DS970 фирмы Detection Systems.

Характерной тенденцией мирового технологического развития последнего десятилетия явилось зарождение интегральных, в том числе, микросистемных технологий. Инициирующим фактором, способствующим динамичному развитию микросистемной техники, стало появление, так называемых микроэлектромеханических систем - МЭМС, в которых гальванические связи находятся в тесном взаимодействии с механическими перемещениями. Особенностью МЭМС является то обстоятельство, что в них электрические и механические узлы формируются из общего основания (например, кремниевой подложки), причем, в результате использования технологии формирования объемных структур обеспечивается получение микросистемной техники с высокими оперативно-техническими характеристиками (массо-габаритными, весовыми, энергетическими и др), что сразу же привлекло к себе внимание специалистов - разработчиков спецтехники.

Использование МЭМС-технологий в современных электронных системах позволяет значительно увеличить их функциональность. Используя технологические процессы, почти не отличающиеся от производства кремниевых микросхем, разработчики МЭМС-устройств создают миниатюрные механические структуры, которые могут взаимодействовать с окружающей средой и выступать в роли датчиков, передающих воздействие в интегрированную с ними электронную схему. Именно датчики являются наиболее распространенным примером использования МЭМС-технологии: они используются в гироскопах, акселерометрах, измерителях давления и других устройствах.

В настоящее время почти все современные автомобили используют МЭМС-акселерометры для активации воздушных подушек безопасности. Микроэлектромеханические датчики давления широко используются в автомобильной и авиационной промышленности. Гироскопы находят применение во множестве устройств, начиная со сложного навигационного оборудования космических аппаратов и заканчивая джойстиками для компьютерных игр. МЭМС-устройства с микроскопическими зеркалами используются для производства дисплеев и оптических коммутаторов.

Микрокоммутаторы и резонансные устройства, выполненные по МЭМС-технологии, демонстрируют меньшие омические потери и высокую добротность при уменьшении потребляемой мощности и габаритов, лучшей повторяемости и более широком диапазоне варьируемых параметров. В биотехнологии применение МЭМС-устройств позволяет создавать дешевые, но производительные однокристальные устройства для расшифровки цепочек ДНК, разработки новых лекарственных и других специальных препаратов ("лаборатория на кристалле"). Кроме того, необходимо также отметить емкий рынок струйных принтеров, в катриджах которых используются микрожидкостные МЭМС-устройства, создающие и выпускающие микрокапли чернил под управлением электрических сигналов.

По мнению экспертов, развитие микросистемной техники может иметь такое же влияние на научно-технический прогресс, какое оказало появление микроэлектроники на становление и современное состояние ведущих областей науки и техники. В ближайшее время можно ожидать создание микросистемных датчиков для приборов определения различных запахов, что, безусловно, существенно активизирует криминалистику и будет способствовать решению проблемы биометрической бесконтактной идентификации личности и контроля НСД.

 

 

Переходим к рассмотрению 2 учебного вопроса.




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 543; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.