КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методы изучения статистической связи
В процессе изучения связи надо учитывать, что мы используем математический аппарат, но всегда надо иметь теоретические обоснования той связи, которую пытаются показать. Наиболее простой способ иллюстрации зависимости между двумя величинами — построение таблиц, показывающих, как при изменении одной величины меняется другая. Пример 4.
Таблица показывает лишь согласованность в изменении двух величин, наличие связи. Но она не определяет, ни тесноту, ни форму этой связи. Один из простых показателей тесноты корреляционной зависимости — показатель корреляции рангов. Разберем порядок вычисления этого показателя на примере. Изучается товарооборот и суммы издержек обращения по ряду магазинов (в тыс. руб.). Данные представлены таблицей 1. Таблица 4.8
Из таблицы видно, что с ростом товарооборота растут и издержки обращения. График еще раз это подтверждает. Но в ряде случаев увеличение товарооборота ведет и к уменьшению издержек обращения, поскольку, помимо двух названных величин, в реальном процессе торговли участвуют и другие факторы, которые в рассмотрение не включены и носят случайный характер. Рассмотрим критерий тесноты связи, названный показателем корреляции рангов. От величин абсолютных перейдем к рангам по такому правилу: самое меньшее значение — ранг 1, затем 2 и т.д. Если встречаются одинаковые значения, то каждое из них заменяется средним. Итак:
Построим разности между рангами и возведем их в квадрат. 1. Если ранги совпадают, то ясно, что сумма их квадратов равна 0.
Связь полная, прямая. 2. Ранги образуют обратную последовательность 1 10 2 9 В этом случае 3 8 Связь полная, обратная. 3. Среднее значение из двух крайних означает полное отсутствие связи: 4. Показатель корреляции рангов: Показатель показывает, как отличается полученная при наблюдении сумма квадратов разностей между рангами от случая отсутствия связи. Проанализируем показатель корреляции рангов. 1. Связь полная и прямая, и 2. Связь полная и обратная, и 3. Все остальные значения лежат между -1 и +1. Построим показатель корреляции рангов для нашего примера:
Полученный показатель свидетельствует о достаточно тесной связи между товарооборотом и издержками. Для определения тесноты корреляционной связи применяется коэффициент корреляции. Коэффициент корреляции изменяется от -1 до +1 и показывает тесноту и направление корреляционной связи: -Если отклонения по и по от среднего совпадают и по знаку, и по величине, то это полная прямая связь, то =+1. -Если полная обратная связь, то =-1. -Если связь отсутствует, то =0. Наиболее удобной формулой для расчета коэффициента корреляции является:
(1) Коэффициент корреляции можно рассчитать и по другой формуле: (2), где и
Дата добавления: 2014-01-20; Просмотров: 321; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |