КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Железо и его соединения с углеродом
Строительные стали В связи с тем что подавляющее большинство элементов строительных конструкций соединяют сваркой, основным требованием к строительным сталям является их хорошая свариваемость, поэтому содержание углерода в них не должно превышать 0,25%. Более высокое содержание углерода может привести к образованию закалочных структур, возникновению внутренних напряжений и даже образованию трещин. Для изготовления несущих сварных и клепаных конструкций рекомендуют следующие виды сталей: мартеновскую — марок ВМСтЗкс(п), низколегированную — марок 15ГС, 14Г2, 10Г2С, 10Г2СД, 15ХСНД, а также кислородно-конвертерную марок ВКСтЗс)|(пс. Стали марок Ст4 и Ст5 рекомендуют для несварных конструкций. Сталь для конструкций, работающих на динамические и вибрационные нагрузки и предназначенных для эксплуатации в условиях низких температур, должна проверяться на ударную вязкость при отрицательных температурах. К сталям для мостовых конструкций предъявляют специальные требования (ГОСТ 6713-75) по однородности и мелкозернистости, отсутствию внешних дефектов, прочностным и деформационным свойствам. Для армирования железобетонных конструкций сталь применяют в виде стержней, проволоки, сварных сеток, каркасов. Арматурная сталь может быть горячекатаная (стержневая) и холоднокатаная (проволочная). По форме стержни могут быть круглыми или периодическими (рис. 5.31) для улучшения сцепления с бетоном. В ряде случаев для повышения механических свойств (увеличения предела текучести) сталь подвергают деформированию (наклеп) либо термообработке.
Диаграмма состояния железо – цементит (fe – Fe3C)
К железоуглеродистым сплавам относят стали и чугуны. Основными элементами, от которых зависят структура и свойства сталей и чугунов, является железо и углерод. Железо может находиться в двух аллотропических формах – α и γ. Твердый раствор углерода и других элементов в α-железе называется ферритом. Структура феррита показана на рис. 28, а. Феррит имеет низкую твердость и прочность: 80 НВ; σв=250 МПа (25 кгс/мм2) и высокую пластичность и вязкость (δ = 50 %; ψ = 80 %; КСU = 2,5 МДж/м2). Поэтому технически чистое железо, структура которого представляет зерна феррита, хорошо подвергается холодной деформации, т. е. хорошо штампуется, прокатывается, протягивается в холодном состоянии. Чем больше феррита в железоуглеродистых сплавах, тем они пластичнее.
Рис. 28. Микроструктура: а – феррит, X 200; б – аустенит, X 500; в – цементит (в виде сетки), X 500 В значительно больших количествах растворяет углерод γ-железо (до 2,14 % при температуре 1147 °С). Твердый раствор углерода и других элементов в γ-железе называется аустенитом. Характерная особенность аустенита заключается в том, что он в железоуглеродистых сплавах может существовать только при высоких температурах. Как и всякий твердый раствор, аустенит имеет микроструктуру, представляющую собой зерна твердого раствора (рис. 28, б). Аустенит пластичен δ = 40 – 50 %, а твердость его составляет 160 – 200 НВ. Железо с углеродом также образуют химическое соединение Fe3C, называемое цементитом или карбидом железа. В цементите 6,67 % С; он имеет высокую твердость (более 800 НВ), но чрезвычайно низкую, практически нулевую, пластичность. Чем больше цементита в железоуглеродистых сплавах, тем большей твердостью и меньшей пластичностью они обладают. При микроскопическом исследовании цементит выявляется в виде светлых кристаллов (сетка на рис. 28, б). Цементит неустойчив (метастабилен) и при определенных условиях может распадаться, выделяя свободный углерод в виде графита. 3.2. Компоненты, фазы, линии и точки диаграммы (fe – Fe3C) Диаграмма состояния Fe – Fe3C приведена на рис. 29. На этой диаграмме точка А (1539 °С) соответствует температуре плавления (затвердевания) железа, а точка D (≈1600 °С) – температуре плавления (затвердевания) цементита. Линия AВCD – это линия ликвидуса, показывающая температуры начала затвердевания (конца плавления) сталей и белых чугунов. При температурах выше линии AВCD – сплав жидкий. Линия AНJECF –это линия солидуса, показывающая температуры конца затвердевания (начала плавления).
Рис. 29.Диаграмма состояния Fe – Fe3C
По линии ликвидуса АВС (при температурах, соответствующих линии АВС) из жидкого сплава кристаллизуется аустенит, а по линии ликвидуса CD – цементит, называемый первичным цементитом. В точке С при температуре 1147 °С и содержании 4,3 % углерода из жидкого сплава одновременно кристаллизуется аустенит и цементит первичный, образуя эвтектику, называемую ледебуритом. При температурах, соответствующих линии солидуса АHJЕ, сплавы с содержанием углерода до 2,14 % окончательно затвердевают с образованием структуры аустенита. На линии солидуса ЕС (1147 °С) сплавы с содержанием углерода от 2,14 до 4,3 % окончательно затвердевают с образованием эвтектики ледебурита. Так как при более высоких температурах из жидкого сплава выделяется аустенит, следовательно, такие сплавы после затвердевания имеют структуру аустенит + ледебурит. На линии солидуса CF (1147 °С) сплавы с содержанием углерода от 4,3 до 6,67 % окончательно затвердевают также с образованием эвтектики ледебурита. Так как при более высоких температурах из жидкого сплава выделяется цементит (первичный), следовательно, такие сплавы после затвердевания имеют структуру – первичный цементит + ледебурит. В области АВСЕJHА, между линией ликвидуса АС и солидуса АHJЕС, имеется жидкий сплав + кристаллы аустенита; в области CDF, между линией ликвидуса CD и солидуса CF, – жидкий сплав + кристаллы цементита (первичного). В результате первичной кристаллизации во всех сплавах с содержанием углерода до 2,14 % образуется однофазная структура – аустенит. Сплавы железа с углеродом, в которых в результате первичной кристаллизации в равновесных условиях получается аустенитная структура, называют сталями. Следовательно, сталь – это железоуглеродистые сплавы с содержанием углерода до 2,14 %. Сплавы с содержанием углерода более 2,14 %, в которых при кристаллизации образуется эвтектика ледебурит, называют чугунами. Следовательно, чугун – это железоуглеродистые сплавы с содержанием углерода более 2,14 %. В рассматриваемой системе практически весь углерод находится в связанном состоянии, в виде цементита. Излом таких чугунов светлый, блестящий (белый излом), поэтому такие чугуны называют белыми. В железоуглеродистых сплавах превращения в твердом состоянии характеризуют линии GSE, PSK, PQ. Линия GS показывает начало превращения аустенита в феррит (при охлаждении). Следовательно, в области GSP имеется структура аустенит + феррит. Критические точки, лежащие на линии GS обозначают А3; при нагреве их обозначают Ас3, а при охлаждении – Аr3. Линия SE показывает, что с понижением температуры растворимость углерода в аустените уменьшается. Так, при 1147 °С в аустените может раствориться углерода 2,14 %, а при 727° С – 0,8 %. С понижением температуры в сталях с содержанием углерода от 0,8 до 2,14 % из аустенита выделяется избыточный углерод в виде цементита, называемого вторичным. Следовательно, ниже линии SE (до температуры 727 °С) сталь имеет структуру: аустенит + цементит вторичный. Критические точки, лежащие на линии SE, обозначаются Аст. В чугунах с содержанием углерода от 2,14 до 4,3 % при 1147 °С, кроме ледебурита, есть аустенит, из которого при понижении температуры тоже выделяется вторичный цементит. Следовательно, ниже линии ЕС (до температуры 727 °С) белый чугун имеет структуру: ледебурит + аустенит + цементит вторичный. Линия PSK (727°С) – это линия эвтектоидного превращения. На этой линии во всех железоуглеродистых сплавах аустенит распадается, образуя структуру, представляющую собой механическую смесь феррита и цементита и называемую перлитом. Критические точки, лежащие на линии PSK, обозначаются А1, при нагреве их обозначают Аc1 а при охлаждении – Аr1. Ниже 727 °С железоуглеродистые сплавы имеют следующие структуры. Стали, содержащие углерода менее 0,8 %, имеют структуру феррит + перлит и называются доэвтектоидными сталями (рис. 30, а).
Рис. 30. Микроструктура стали: а – доэвтектоидная сталь, феррит (светлые участки) и перлит (темные участки), X 500; б – эвтектоидная сталь, перлит X 1000; в – заэвтектоидная сталь, перлит и цементит (в виде сетки) X 200
Сталь с содержанием углерода 0,8 % имеет структуру перлита и называется эвтектоидной сталью (рис. 30, б). Стали с содержанием углерода от 0,8 до 2,14 % имеют структуру перлит + цементит (вторичный) и называются заэвтектоидными сталями (рис. 30, в). Белые чугуны с содержанием углерода от 2,14 до 4,3 % имеют структуру перлит + вторичный цементит + ледебурит и называются доэвтектическими чугунами (рис. 31, а). Белый чугун с содержанием углерода 4,3 % имеет структуру ледебурита и называется эвтектическим чугуном (рис. 31, б). Белые чугуны с содержанием углерода от 4,3 до 6,67 % имеют структуру цементит первичный + ледебурит и называются заэвтектическими чугунами (рис. 31, в).
Рис. 31. Микроструктура белого чугуна: а – доэвтектический чугун, перлит (темные участки) и ледебурит (цементит вторичный в структуре не виден), X 500; б – эвтектический чугун, ледебурит (темные участки – перлит, светлые – цементит), X 1000; в – заэвтектический чугун, цементит (светлые пластины) и ледебурит, X 500
Линия PQ (см. рис. 29) показывает, что с понижением температуры растворимость углерода в феррите уменьшается от 0,02 % при 727 °С до 0,006 % при комнатной температуре. При охлаждении ниже температуры 727 °С из феррита выделяется избыточный углерод в виде цементита, называемого третичным. В большинстве сплавов железа с углеродом третичный цементит структурно не выявляется. Однако в низкоуглеродистых сталях в условиях медленного охлаждения третичный цементит выделяется по границам зерен феррита (рис. 32), уменьшая пластические свойства стали, особенно ее способность к холодной штамповке.
Дата добавления: 2014-01-20; Просмотров: 2391; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |