КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Системы нумерации
Лекция 7 1. Египетская 2. Алфавитная 3. Древнегреческая 4. Славянская кириллическая 5. Римская 6. Арабская
Счёт появился тогда, когда человеку потребовалось информировать своих сородичей о количестве обнаруженных им предметов. Сначала люди просто различали один предмет перед ними или нет. Если предмет был не один, то говорили «много». Первыми понятиями математики были "меньше", "больше" и "столько же". Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся. Самым простым инструментом счета были пальцы на руках человека. С их помощью можно было считать до 5, а если взять две руки, то и до 10. Одна из таких систем счета впоследствии и стала общеупотребительной - десятичная. В древние времена люди ходили босиком. Поэтому они могли использовать для счета пальцы как рук, так и ног. Таким образом они могли, казалось бы, считать лишь до двадцати. Но с помощью этой «босоногой машины» люди могли достигать значительно больших чисел: 1 человек – это 20, 2 человека - это два раза по 20 и т.д. До сих пор существуют в Полинезии племена, которые для счета используют 20-ричную систему счисления. Запомнить большие числа было трудно, поэтому к «счётной машине» рук и ног добавляли механические приспособления. Способов счета было придумано немало. В разных местах придумывались разные способы передачи численной информации. Например, перуанцы употребляли для запоминания чисел разноцветные шнуры с завязанными на них узлами. Для запоминания чисел использовались камешки, зёрна, ракушки и т.д. С операциями сложения и вычитания люди имели дело задолго до того, как числа получили имена. Когда несколько групп сборщиков кореньев или рыболовов складывали в одно место свою добычу, они выполняли операцию сложения. С операцией умножени я люди познакомились, когда стали сеять хлеб и увидели, что собранный урожай в несколько раз больше, чем количество посеянных семян. Когда добытое мясо животных или собранные орехи делили поровну между всеми «ртами», выполнялась операция деления. Потребность в записи чисел появилась в очень древние времена, как только люди научились считать. Количество предметов изображалось нанесением черточек или засечек на какой-либо твердой поверхности: камне, глине и т.д. Люди рисовали палочки на стенах и делали зарубки на костях животных или ветках деревьев. Археологами найдены такие «записи» при раскопках культурных слоев, относящихся к периоду палеолита (10-11 тыс. лет до н.э.). Этот способ записи чисел называют единичной («палочной», «унарной») системой счисления. Любое число в ней образуется повторением одного знака – единицы. Чем больше зерна собирали люди со своих полей, чем многочисленнее становились их стада, тем большие числа становились им нужны. Единична запись для таких чисел была громоздкой и неудобной, поэтому люди стали искать более компактные способы обозначать большие числа. Появились специальные обозначения для «пятерок», «десяток», «сотен» и т.д.
Египетская нумерация Очень наглядной была система таких знаков у египтян. Египтяне придумали эту систему около 5 000 лет тому назад. Это одна из древнейших систем записи чисел, известная человеку. Умножение и деление они производили путем последовательного удвоения чисел – фактически представлением числа в двоичной системе.
Алфавитная нумерация В середине 5 века до н.э. появилась запись чисел нового типа, так называемая алфавитная нумерация. В этой системе записи числа обозначались при помощи букв алфавита, над которыми ставились черточки: первые девять букв обозначали числа от 1 до 9, следующие девять - числа 10, 20, 30,..., 90, и следующие девять - числа 100, 200,...,900. Таким образом, можно было обозначать любое число до 999.
Древнегреческая нумерация Запись алфавитными символами могла делаться в любом порядке, так как число получалось как сумма значений отдельных букв. Например, записи φλβ, βφλ и φβλ эквивалентны и означают число 532. Однако выполнять арифметические вычисления в такой системе было настолько трудно, что без применения каких-то приспособлений оказалось обойтись практически невозможно.
Славянская кириллическая нумерация Эта форма записи чисел получила большое распространение в связи с тем, что имела полное сходство с греческой записью чисел. Если посмотреть внимательно, то увидим, что после "а" идет буква "в", а не "б" как следует по славянскому алфавиту, то есть используются только буквы, которые есть в греческом алфавите. Чтобы различать буквы и цифры, над числами ставился особый значок – титло (~). Так можно было записывать числа до 999. Для больших чисел использовался знак тысяч ≠, который ставился впереди символа, обозначавшего число. До XVII века эта форма записи чисел была официальной на территории России, Белоруссии, Украины, Болгарии, Венгрии, Сербии и Хорватии. До сих пор православные церковные книги используют эту нумерацию. Римская нумерация Это нумерация, известная нам и в настоящее время. С нею мы достаточно часто сталкиваемся в повседневной жизни. Это номера глав в книгах, указание века, числа на циферблате часов и т. д. Возникла эта нумерация в древнем Риме. В ней имеются узловые числа: один, пять и т. д. Остальные числа получались путем прибавления или вычитания одних узловых чисел из других. Например, четыре записывается как IV (пять минус один), восемь – VIII (пять плюс три), сорок – XL (пятьдесят минус десять), девяносто шесть – XCVI (сто минус десять плюс пять и плюс еще один) и т. д.
Арабская нумерация Это самая распространенная на сегодняшний день нумерация, которой мы пользуемся в настоящее время. Применяемые в настоящее время цифры 1234567890 сложились в Индии около 400 г. н.э. Арабы стали пользоваться подобной нумерацией около 800 г. н.э., а примерно в 1200 г.н.э. ее начали применять в Европе, однако в Европе они стали известны благодаря трудам арабских математиков, и потому за ними утвердилось название «арабские», хотя сами арабы вплоть до настоящего времени пользуются совсем другими символами. В России арабская нумерация стала использоваться при Петре I (до конца XVII века сохранилась славянская нумерация). В древней Индии и Китае существовали записи, построенные на мультипликативной принципе. В таких системах для записи одинакового числа единиц, десятков, сотен или тысяч применяются одни и те же символы, но после каждого символа пишется название соответствующего разряда. Если десятки обозначить символом Д, а сотни – С, то число 325 будет выглядеть так: ЗС2Д5. Между II и VI вв.н.э. индийцы познакомились с греческой астрономией. Индийцы и соединили греческие принципы нумерации со своей десятичной мультипликативной системой. Из арабского языка заимствовано и слово "цифра" (по-арабски "сыфр"), означающее буквально "пустое место". Это слово применялось для названия знака пустого разряда, и этот смысл сохранялся до XVIII века, хотя еще в XV веке появился латинский термин "нуль" (nullum – ничто). Форма индийских цифр претерпевала многообразные изменения. Та форма, которой мы сейчас пользуемся, установилась в XVI веке. По мнению марроканского историка Абделькари Боунжира арабским цифрам в их первоначальном варианте было придано значение в строгом соответствии с числом углов, которые образуют фигуры.
Дата добавления: 2014-01-20; Просмотров: 1280; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |