Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Системы нумерации

Лекция 7

1. Египетская

2. Алфавитная

3. Древнегреческая

4. Славянская кириллическая

5. Римская

6. Арабская

 

Счёт появился тогда, когда человеку потребовалось информировать своих сородичей о количестве обнаруженных им предметов.

Сначала люди просто различали один предмет перед ними или нет. Если предмет был не один, то говорили «много».

Первыми понятиями математики были "меньше", "больше" и "столько же". Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

Самым простым инструментом счета были пальцы на руках человека. С их помощью можно было считать до 5, а если взять две руки, то и до 10. Одна из таких систем счета впоследствии и стала общеупотребительной - десятичная.

В древние времена люди ходили босиком.

Поэтому они могли использовать для счета пальцы как рук, так и ног. Таким образом они могли, казалось бы, считать лишь до двадцати.

Но с помощью этой «босоногой машины» люди могли достигать значительно больших чисел: 1 человек – это 20, 2 человека - это два раза по 20 и т.д. До сих пор существуют в Полинезии племена, которые для счета используют 20-ричную систему счисления. Запомнить большие числа было трудно, поэтому к «счётной машине» рук и ног добавляли механические приспособления. Способов счета было придумано немало. В разных местах придумывались разные способы передачи численной информации. Например, перуанцы употребляли для запоминания чисел разноцветные шнуры с завязанными на них узлами. Для запоминания чисел использовались камешки, зёрна, ракушки и т.д.

С операциями сложения и вычитания люди имели дело задолго до того, как числа получили имена. Когда несколько групп сборщиков кореньев или рыболовов складывали в одно место свою добычу, они выполняли операцию сложения. С операцией умножени я люди познакомились, когда стали сеять хлеб и увидели, что собранный урожай в несколько раз больше, чем количество посеянных семян. Когда добытое мясо животных или собранные орехи делили поровну между всеми «ртами», выполнялась операция деления.

Потребность в записи чисел появилась в очень древние времена, как только люди научились считать. Количество предметов изображалось нанесением черточек или засечек на какой-либо твердой поверхности: камне, глине и т.д. Люди рисовали палочки на стенах и делали зарубки на костях животных или ветках деревьев. Археологами найдены такие «записи» при раскопках культурных слоев, относящихся к периоду палеолита (10-11 тыс. лет до н.э.). Этот способ записи чисел называют единичной («палочной», «унарной») системой счисления. Любое число в ней образуется повторением одного знака – единицы.

Чем больше зерна собирали люди со своих полей, чем многочисленнее становились их стада, тем большие числа становились им нужны. Единична запись для таких чисел была громоздкой и неудобной, поэтому люди стали искать более компактные способы обозначать большие числа. Появились специальные обозначения для «пятерок», «десяток», «сотен» и т.д.

 

Египетская нумерация

Очень наглядной была система таких знаков у египтян. Египтяне придумали эту систему около 5 000 лет тому назад. Это одна из древнейших систем записи чисел, известная человеку.

Умножение и деление они производили путем последовательного удвоения чисел – фактически представлением числа в двоичной системе.

 

Алфавитная нумерация

В середине 5 века до н.э. появилась запись чисел нового типа, так называемая алфавитная нумерация.

В этой системе записи числа обозначались при помощи букв алфавита, над которыми ставились черточки: первые девять букв обозначали числа от 1 до 9, следующие девять - числа 10, 20, 30,..., 90, и следующие девять - числа 100, 200,...,900. Таким образом, можно было обозначать любое число до 999.

 

Древнегреческая нумерация

Запись алфавитными символами могла делаться в любом порядке, так как число получалось как сумма значений отдельных букв.

Например, записи φλβ, βφλ и φβλ эквивалентны и означают число 532.

Однако выполнять арифметические вычисления в такой системе было настолько трудно, что без применения каких-то приспособлений оказалось обойтись практически невозможно.

 

 

Славянская кириллическая нумерация

Эта форма записи чисел получила большое распространение в связи с тем, что имела полное сходство с греческой записью чисел. Если посмотреть внимательно, то увидим, что после "а" идет буква "в", а не "б" как следует по славянскому алфавиту, то есть используются только буквы, которые есть в греческом алфавите.

Чтобы различать буквы и цифры, над числами ставился особый значок – титло (~). Так можно было записывать числа до 999. Для больших чисел использовался знак тысяч ≠, который ставился впереди символа, обозначавшего число. До XVII века эта форма записи чисел была официальной на территории России, Белоруссии, Украины, Болгарии, Венгрии, Сербии и Хорватии. До сих пор православные церковные книги используют эту нумерацию.

Римская нумерация

Это нумерация, известная нам и в настоящее время. С нею мы достаточно часто сталкиваемся в повседневной жизни. Это номера глав в книгах, указание века, числа на циферблате часов и т. д.

Возникла эта нумерация в древнем Риме. В ней имеются узловые числа: один, пять и т. д. Остальные числа получались путем прибавления или вычитания одних узловых чисел из других.

Например, четыре записывается как IV (пять минус один), восемьVIII (пять плюс три), сорокXL (пятьдесят минус десять), девяносто шестьXCVI (сто минус десять плюс пять и плюс еще один) и т. д.

 

Арабская нумерация

Это самая распространенная на сегодняшний день нумерация, которой мы пользуемся в настоящее время.

Применяемые в настоящее время цифры 1234567890 сложились в Индии около 400 г. н.э. Арабы стали пользоваться подобной нумерацией около 800 г. н.э., а примерно в 1200 г.н.э. ее начали применять в Европе, однако в Европе они стали известны благодаря трудам арабских математиков, и потому за ними утвердилось название «арабские», хотя сами арабы вплоть до настоящего времени пользуются совсем другими символами.

В России арабская нумерация стала использоваться при Петре I (до конца XVII века сохранилась славянская нумерация).

В древней Индии и Китае существовали записи, построенные на мультипликативной принципе. В таких системах для записи одинакового числа единиц, десятков, сотен или тысяч применяются одни и те же символы, но после каждого символа пишется название соответствующего разряда.

Если десятки обозначить символом Д, а сотни – С, то число 325 будет выглядеть так: ЗС2Д5.

Между II и VI вв.н.э. индийцы познакомились с греческой астрономией. Индийцы и соединили греческие принципы нумерации со своей десятичной мультипликативной системой.

Из арабского языка заимствовано и слово "цифра" (по-арабски "сыфр"), означающее буквально "пустое место". Это слово применялось для названия знака пустого разряда, и этот смысл сохранялся до XVIII века, хотя еще в XV веке появился латинский термин "нуль" (nullum – ничто).

Форма индийских цифр претерпевала многообразные изменения. Та форма, которой мы сейчас пользуемся, установилась в XVI веке.

По мнению марроканского историка Абделькари Боунжира арабским цифрам в их первоначальном варианте было придано значение в строгом соответствии с числом углов, которые образуют фигуры.

 

<== предыдущая лекция | следующая лекция ==>
Языки программирования. Инструментальная среда пользователя | Системы счисления, используемые в компьютере
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1280; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.