![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Комплексы нормируемых метрологических характеристик средств измерений
Большое разнообразие групп СИ делает невозможной регламентацию конкретных комплексов MX для каждой из этих групп в одном нормативном документе. В то же время все СИ не могут характеризоваться единым комплексом нормируемых MX, даже если он представлен в самой общей форме. Основным признаком деления СИ на группы является общность комплекса нормируемых MX, необходимых для определения характерных инструментальных составляющих погрешностей измерений. В этом случае все СИ целесообразно разделить на три большие группы, представленные по степени усложнения MX: 1) меры и цифро-аналоговые преобразователи; 2) измерительные и регистрирующие приборы; 3) аналоговые и аналого-цифровые измерительные преобразователи. При установлении комплекса нормируемых MX принята следующая модель инструментальной составляющей погрешности измерений: Всю совокупность MX можно разбить на две большие группы. В первой из них инструментальная составляющая погрешности определяется путем статистического объединения отдельных ее составляющих. При этом доверительный интервал, в котором находится инструментальная погрешность, определяется с заданной доверительной вероятностью меньше единицы. Для MX этой группы принята следующая модель погрешности в реальных условиях применения (модель 1):
где
L — число дополнительных погрешностей, равное всех величин, существенно влияющих на погрешность в реальных условиях. В зависимости от свойств СИ данного типа и рабочих условий его применения отдельные составляющие могут отсутствовать. Первая модель выбирается, если допускается, что погрешность изредка превышает значение, рассчитанное по нормируемым характеристикам. При этом по комплексу MX можно рассчитать точечные и интервальные характеристики, в которых инструментальная составляющая погрешности измерений находится с любой заданной доверительной вероятностью, близкой к единице, но меньше ее. Для второй группы MX статистическое объединение составляющих не применяется. К таким СИ относятся лабораторные средства, а также большинство образцовых средств, при использовании которых не производятся многократные наблюдения с усреднением результатов. Инструментальная погрешность в данном случае определяется как арифметическая сумма наибольших возможных значений ее составляющих. Эта оценка дает доверительный интервал с вероятностью, равной единице, являющийся предельной оценкой сверху искомого интервала погрешности, охватывающего все возможные, в том числе весьма редко реализующиеся, значения. Это приводит к существенному ужесточению требований к MX, что может быть применимо только к наиболее ответственным измерениям, например связанным со здоровьем и жизнью людей, с возможностью катастрофических последствий неверных измерений и т.п. Арифметическое суммирование наибольших возможных значений составляющих инструментальной погрешности приводит к включению в комплекс нормируемых MX пределов допускаемой погрешности, а не статистических моментов. Это допустимо также для СИ, имеющих не более трех составляющих, каждая из которых определяется по отдельной нормируемой MX. В этом случае расчетные оценки инструментальной погрешности, полученные арифметическим объединением наибольших значений ее составляющих и статистическим суммированием характеристик составляющих (при вероятности, хотя и меньшей, но достаточно близкой к единице), практически различаться не будут. Для рассматриваемого случая модель 2 погрешности СИ: Здесь Вопросы выбора MX достаточно детально регламентированы в ГОСТ 8.009-84, где приведены характеристики, которые должны нормироваться для названных выше групп СИ. Приведенный перечень может корректироваться для конкретного средства измерений с учетом его особенностей и условий эксплуатации. Важно отметить, что не следует нормировать те MX, которые оказывают несущественный по сравнению с другими вклад в инструментальную погрешность. Определение того, важна ли данная погрешность или нет, производится на основе критериев существенности, приведенных в ГОСТ 8.009—84.
Дата добавления: 2014-01-20; Просмотров: 669; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |