![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Критерии согласия
Вычисление теоретического ряда частот распределения Пуассона
Если известно, что случайная величина распределена по закону Пуассона и задано выражение этого закона, то возможным становится вычисление теоретических частот по формуле Значение функции Пуассона
В предшествующих примерах закон распределения считался известным или существовали довольно веские основания для предположения о форме закона распределения по данному эмпирическому материалу. Сравнение фактических и вычисленных теоретических частот указывает на их близость, но полной сходимости нет. Между 1. Эмпирические и теоретические частоты не противоречат одна одной, а расхождения между ними необходимо считать случайными, поскольку выбор элементов исследование проводили случайным способом. Сделанное предположение о распределении признака по теоретическому закону следует признать верным. 2. Расхождения между теоретическими и эмпирическими частотами объяснить случайностью невозможно. Распределение признака по выбранному теоретическому закону необходимо признать ошибочным. Следует тщательнее изучить вариационный ряд и попробовать подобрать новый закон, который точнее учитывал бы особенности эмпирического материала. Для выбора между этими двумя выводами применяют критерии согласия. Критерием согласия называют правило проверки гипотезы о предположенном законе неизвестного распределения. Критерий согласия Пирсона Пусть в результате наблюдений за случайной величиной Их сумма – это объем совокупности В качестве меры расхождения теоретического фактического рядов частот Пирсон предложил взять среднее арифметическое квадратов отклонений соответствующих частот, разделенных на теоретические частоты
Если все фактические и теоретические частоты совпадают, то случайная величина Правило применение критерия Пирсона: 1. Вычислить по формуле (1) 2. Найти по таблице 3. Сравнить фактическое и критическое значения а) б) Для проверки правильности вычислений используют формулу
Решение: Вспомогательные вычисления удобно проводить в таблице
Эмпирические данные наблюдений согласованы с гипотезой о нормальном распределении генеральной совокупности.
Дата добавления: 2014-01-20; Просмотров: 686; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |