КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лемма о первообразных
Если F1(x) и F2(x) – две первообразные для функции f(x) в некотором промежутке, то разность между ними в этом промежутке равна постоянному числу. Из этой теоремы следует, что если известна какая-нибудь первообразная F(x) данной функции f(x), то всё множество первообразных для f(x) можно записать в виде F(x)+C. Выражение F(x)+C, где F(x) – первообразная функции f(x) и С – произвольная постоянная, называется неопределённым интегралом от функции f(x) и обозначается символом , причём f(x) называется подынтегральной функцией, f(x)dx – подынтегральным выражением, х – переменной интегрирования; – знак неопределённого интеграла. Таким образом, по определению если . Возникает вопрос: для всякой ли функции f(x) существует первообразная, а значит, и неопределённый интеграл?
Свойства неопределённого интеграла 1. Производная от неопределенного интеграла равна подынтегральной функции 2. Дифференциал неопределенного интеграла равен подынтегральному выражению 3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого или где С – произвольное число 4. Постоянный множитель можно выносить за знак интеграла
где k – некоторое число. 5. Интеграл от алгебраической суммы двух функций равен такой же сумме интегралов от этих функций
Дата добавления: 2014-01-11; Просмотров: 1100; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |