Кэлектрохимической коррозии относятся все случаи коррозии в водных растворах. Электрохимической коррозии подвергаются, например, подводные части судов, паровые котлы, проложенные в земле трубопроводы. Коррозия металла, находящегося во влажной атмосфере, также представляет собой электрохимическую коррозию. В результате электрохимической коррозии окисление металла может приводить как к образованию нерастворимых продуктов (например, ржавчины), так и к переходу металла в раствор в виде ионов.
По степени термодинамической неустойч'йвости все металлы делят на пять групп (Н. Д. Томашов), согласующиеся с их положением в ряду напряжений. Группу металлов повышенной термодинамической нестабильности составляют металлы, имеющие значение стандартного электродного потенциала меньше, чем потенциал водородного электрода при рН = 7 (—0,413 В). К ним относятся Li, Rb, Cs, Ва, Sr, Са, Na, Mg, Al, Ti, Zr, Mn, Cr, Zn, Fe. Эти металлы могут корродировать даже в нейтральных средах, т. е. при создании необходимых условий окисляются водой. Конечно, эти металлы корродируют и в кислых средах — под действием кислот, а также под действием других окислителей и, в частности, кислорода. При этом формально протекает следующий процесс:
М - пе~ = Мп+.
Приведем возможные процессы восстановления упомянутых окислителей и выпишем значения электродных потенциалов, воспользовавшись данными разд. 9.4:
2Н20 + 2е-=20Н-+Н2, (рН = 7);
2Н+ = Н2, (рН = 0);
02 + Н20.+ 4е-=40Н-, (рН = 7);
02 + 4Н+ + 4е- = 2Н2О, (рН = 0).
Металлы термодинамически нестабильные имеют значения стандартных электродных потенциалов большие, чем металлы предшествующей группы, но меньше нуля: Cd, In, Tl, Co, Ni, Mo, Pb, W. Поэтому окисляться водой (рН=7) они не могут, но будут неустойчивыми в кислых средах и в любых средах в присутствии кислорода.
Группу металлов промежуточной термодинамической стабильности составляют металлы с положительными значениями стандартных электродных потенциалов, не превышающими значения электродного потенциала, связанного с окисляющим действием кислорода в нейтральной среде Bi, Sb, Re, Тс, Си, Ag, Rh. Поэтому данные металлы будут устойчивы в любых кислых и нейтральных средах в отсутствие кислорода.
Устойчивы во влажной атмосфере, т. е. в присутствии кислорода в нейтральной среде, металлы высокой стабильности: Hg, Pd, Ir, Pt. Стандартные электродные потенциалы этих металлов находятся в интервале между значениями двух электродных потенциалов, характеризующих окисляющее действие кислорода в нейтральной и кислой средах.
Металлом полной стабильности является золото, оно не может быть окислено перечисленными окислителями. Его электродный потенциал в числе рассмотренных — максимален.
Механизм электрохимической коррозии связан с возникновением и работой на поверхности металла во влажной среде микрогальванических элементов. Коррозия осуществляется в результате осуществления анодного (коррозионное окисление металла) и катодного (восстановление окислителя, находящегося во влажной среде) процессов. Процессы окисления и восстановления разделены в пространстве и не мешают друг другу. Кроме природы металла, окислителя и содержания последнего на скорость коррозии влияет природа и количество различных примесей, содержащиеся как в самом металле, так и в коррозионной среде — в атмосфере или в растворе.
Как уже говорилось, некоторые металлы в определенных условиях переходят в пассивное состояние — на их поверхности образуются слои или пленки, состоящие из адсорбированного кислорода, из оксида данного металла или из его соли. Присутствие таких слоев и их структура сильно влияют на скорость коррозии металла; в ряде случаев эти слои обладают защитным действием, вследствие чего металл корродирует лишь ничтожно медленно. В условиях атмосферного воздуха пассивирующие пленки образуются на хроме, никеле, алюминии, цинке.
К важным случаям электрохимической коррозии относятся коррозия в природных водах, в растворах, атмосферная коррозия, коррозия в грунте, коррозия при неравномерной аэрации, контактная коррозия.
Атмосферная коррозия — коррозия во влажном воздухе при обычных температурах. Поверхность металла, находящегося во влажном воздухе, бывает покрыта пленкой воды, содержащей различные газы, и в первую очередь — кислород. Скорость атмосферной коррозии зависит от условий. В частности, на нее влияет влажность воздуха и содержание в нем газов, образующих с водою кислоты (С02, S02 и др.). Большое значение имеет также состояние поверхности металла: скорость атмосферной коррозии резко возрастает при наличии на поверхности шероховатостей, микрощелей, пор, зазоров и других мест, облегчающих конденсацию влаги.
Контактная коррозия может протекать, когда два металла с различными потенциалами соприкасаются друг с другом либо в водной среде, либо при наличии влаги, конденсирующейся из воздуха. Так же, как и в рассмотренном выше случае значительных включений, металлы оказывают друг на друга поляризующее действие; металл с меньшим потенциалом поляризуется анодно, и скорость его коррозии вблизи места контакта резко возрастает.
Контактная коррозия наблюдается, например, в теплофикационных установках, когда медные нагревательные змеевики соединены с железными кипятильниками или трубами. Интенсивная коррозия железа протекает около мест соединения. Однако соотношение между потенциалами контактирующих металлов зависит не только от природы металлов, но также от природы растворенных в воде веществ, от температуры и от других условий и не всегда соответствует взаимному положению металлов в ряду напряжений. Так, в случае контакта железо—цинк последний интенсивно корродирует при комнатной температуре, но в горячей воде полярность металлов изменяется и растворяться начинает железо.
Гальванокоррозия вызывается взаимодействием металла с электролитом, которое может проходить с водородной или с кислородной деполяризацией. Деполяризация – процесс восстановления на катоде.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление