Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Законы сокращения сердца. Сердце. Строение, свойства миокарда




Сердце. Строение, свойства миокарда.

Системы кровообращения

Структурно-функциональная характеристика

Нагнетательная функция сердца. Последовательность периодов и фаз сердечного цикла.

Электрические проявления сердечной деятельности. Электрокардиография, ее диагностическое значение.

Проводящая система сердца. Экстрасистола. Соотношение возбудимости, возбуждения и сокращения сердца.

Строение, свойства миокарда. Законы сокращения сердца.

Структурно-функциональная характеристика системы кровообращения.

Электрические проявления сердечной деятельности

Лекция № 1

Тема: Физиология сердца, строение, свойства миокарда.

План лекции:

Кровь может осуществлять функции жизнеобеспечения организма только при ее непрерывном движении, что обеспечивается деятельностью системы органов кровообращения — сердца и сосудов.

При движении кровь проходит сложный путь по большому и малому кругам кровообращения.

Большой (системный) круг начинается от левого желудочка сердца, включает аорту, артерии, артериолы, капилляры, венулы, вены и заканчивается полыми венами в правом предсердии.

Малый (легочный) круг начинается от правого желудочка, включает легочную артерию ее ветвления на артерии, артериолы, капилляры, вены и заканчивается в левом предсердии. Проходя этот путь, кровь освобождается от избытка СО2 и насыщается О2.

 

Функция сердца заключается в нагнетании крови в артерии в результате сокращения (систолы) и расслабления (диастолы) миокарда.

Систола, диастола и общая пауза предсердий и желудочков в норме согласованы и составляют цикл работы сердца, который длится 0,75–1,0 с (в среднем 0,8 с, при сокращения сердца 75 ударов в мин). Сердечный цикл начинается цикл систолой предсердий продолжительностью 0,1 с. По ее окончании наступает систола желудочков продолжительностью 0,33 с. Предсердия в это время находятся в состоянии диастолы, которая продолжается 0,7 с. Систола желудочков сменяется их диастолой длительностью 0,47 с. За 0,1 с. До окончания диастолы желудочков наступает новая систола предсердий.

При спокойном состоянии организма сердце в сутки работает — 9 ч 24 мин, отдыхает — 14 ч 36 мин. Важным показателем является объем крови, который вмещает сердце. В среднем он составляет 500–600 мл. Оба желудочка у мужчин вмещают 250–350 мл. У женщин несколько меньше. Объем для левого желудочка составляет 120–130 мл.

Миокард отличается своеобразным строением. Основная масса рабочего миокарда состоит из поперечно-полосатых волокон, расположенных в различном направлении. Различают кольцевые, косые, продольные, петлеобразные пучки. Помимо рабочего миокарда есть скопления особых клеток названных атипической мышечной тканью: здесь мало миофибрилл, много саркоплазмы, слабая исчерченность. Она образует проводящую систему сердца. Рабочий миокард и проводящая система сердца характеризуются наличием большого числа межклеточных контактов — нексусов (дисков) – область плотных контактов между миоцитами, в мембранах которых имеются общие для контактирующих клеток каналы. Каналы сформированы шестью молекулами белков коннексонов и имеют низкое сопротивление электрическому току, через которые возбуждение способно переходить с одного кардиомиоцита на другой. Через нексусы кардиомиоциты обмениваются ионами Са, принимающими участие в передаче возбуждения и сокращения, и доругими биологически активными веществами.

В составе нексусов дисков имеются десмосомы – области прочного механического прикрепления клеток друг к другу. Благодаря наличию непосредственной электрической и механической связи между КМ возбуждение и сокращение оказываются синхронизированными. Поэтому миокард функционирует как единое целое и представляет собой функциональный синцитий.

Главным источником энергии для сердца является процесс аэробного окисления. Аэробное окисление (аэробный гликолиз) для сердца, в отличие от скелетных мышц, играет незначительную роль. Потенциальными носителями энергии являются главным образом неуглеводные субстраты: свободные жирные кислоты и молочная кислота (около 60%), пировиноградная кислота, кетоновые тела и аминокислоты (менее 10%). Только около 30% расходуемой сердцем энергии покрывается за счет глюкозы. Большая зависимость деятельности сердечной мышцы от аэробного окисления делает сердце весьма зависимым от поступления кислорода к КМ.

Метаболизм сердца обеспечивается в основном за счет аэробных процессов. Энергетическими субстратами являются глюкоза, свободные жирные кислоты, лактат. При относительном покое левый желудочек потребляет 2 мл О2 в мин на 100 г массы. При физической нагрузке потребление О2 увеличивается до 80 мл/мин на 100 г массы. При этом роль лактата возрастает (на 50%), роль глюкозы уменьшается. Миокард содержит много миоглобина.

Свойства миокарда:

1. Возбудимость — способность реагировать на раздражение. При возбуждении во время систолы возбудимость снижается и исчезает — возникает состояние рефрактерности (невозбудимости). Различают абсолютную рефрактерность, которая длится 200–300 мс, когда миокард не реагирует даже на сверхпороговые раздражители и относительную рефрактерность, когда миокард реагирует только на сильные раздражители.

Затем наступает фаза супернормальности (экзальтации), при которой ткань реагирует даже на подпороговые раздражители. Значение фазы абсолютной рефрактерности – чтобы систола дошла до конца.

2. Проводимость — обеспечивает распространение возбуждения по проводящей системе и по миокарду, благодаря нексусам.

3. Сократимость и способность к расслаблению. Сила сердечных сокращений зависит от исходной длины мышечных волокон (закон сердца Франка-Старлинга). При физических нагрузках, когда к сердцу притекает больше крови, желудочки больше растягиваются и сокращения их становятся более сильными.

 

4. Автоматия — способность органа (ткани) возбуждаться под влиянием импульсов, возникающих в них самих. Так, изолированное сердце лягушки, помещенное в раствор Рингера, может сокращаться долгое время. Автоматия сердца человека в исключительно редких случаях может проявляться и после его смерти.

Пропуская через сосуды остановившегося сердца кровезамещающие растворы, обогащенные кислородом и имеющие температуру 37°С, его работу можно восстановить. Первые опыты по оживлению сердца были проведены в 1902 г. Кулябко на сердце ребенка через 20 часов после смерти. Способностью к автоматии обладает атипическая мышечная ткань проводящей системы сердца. В проводящей системе сердца содержатся так же нервные клетки, образующие здесь густую нервную сеть, пронизывающую структуру узлов. Они относятся к кардиальной части метасимпатической нервной системы.

В клетках синоатриального узла, выполняющего роль водителя ритма сердца, МП не стабилен, в период диастолы наблюдается постепенное его уменьшение – спонтанная медленная диастолическая деполяризация (МДД), при достижении критического уровня которой (примерно –50мВ) возникает новый потенциал действия (фазы деполяризация и реполяризация). На этом механизме основана автоматическая активность указанных сердечных клеток. Ионный механизм МДД состоит в том, что на пике каждого ПД после деполяризации возникает калиевый ток, приводящий к запуску процессов реполяризации. Когда калиевый ток и выход ионов калия уменьшаются, мембрана начинает деполяризоваться: открываются кальциевые каналы двух типов – временно открывающиеся кальциевые каналы и длительно действующие кальциевые каналы. Кальциевый ток, идущий по временно открывающимся кальциевым каналам, образует МДД, кальциевый ток в длительно действующих кальциевых каналах создает ПД.

Для пейсмекерных клеток характерно:

1.наличие МДД, который плавно переходит в фазу быстрой деполяризации.

2. У ПД пейсмекерных клеток нет плато реполяризации.

3. У пейсмекерных клеток отсутствует овершут (потенциал превышения).

4. МП у пейсмекерных клеток ниже (–55–60 мВ), чем МП сократительных кардиомиоцитов (–90 мВ).

3. Проводящая система сердца.

В правом предсердии в области устьев полых вен расположен сино-атриальный (СА) узел (Кис-Фляка) — водитель ритма — пейсмекер I порядка. Частота генерируемых им импульсов составляет 60–80 в мин. От СА-узла отходят три пучка (Бахмана, Венкебаха, Тореля). Возбуждение распространяется по миокарду предсердий и достигает атрио-вентрикулярного (АВ) узла (Ашоф-Тавара), расположенного в правом предсердии в области межпредсердной перегородки. Частота генерируемых им импульсов 40–50 в мин. Это пейсмекер II порядка.

От него берет начало пучок Гиса, соединяющий предсердия с желудочками. В желудочках он делится на правую и левую ножки пучка Гиса, образует пейсмекер III порядка, генерирует 30–40 имп/мин. Конечные разветвления проводящей системы под эндокардом образуют сеть волокон Пуркинье (20 имп/мин). Следовательно, импульс зарождается в СА-узле, распространяется по сократительному миокарду, проводящей системе и вызывает систолу сердца. Первой сокращается верхушка желудочков, затем основание.

В 19 веке Станиус, используя методику наложения лигатур на различные структуры проводящей системы сердца лягушки, установил степень автоматии разных отделов проводящей системы — градиент автоматии.

I лигатура Станиуса (изолирующая) накладывается на границе между венозным синусом и правым предсердием. После перевязки способность к сокращению остается только у части предсердия, сохранившего связь с венозным синусом. Предсердие и желудочек прекращают сокращения, так как не получают импульсов из венозного синуса. Через некоторое время импульсы начинает генерировать АВ-узел, и сокращения возникают одновременно в предсердиях и желудочке с более редким ритмом.

II лигатура (раздражающая) накладывается по атриовентрикулярной борозде после первой лигатуры при остановившемся сердце. Лигатура раздражает АВ-узел и вызывает его автоматию. В этом случае предсердия и желудочек сокращаются одновременно, но независимо друг от друга.

III лигатуру накладывают на нижнюю треть желудочка, отделяя верхушку. Верхушка не обладает свойством автоматии.

Гаскелл провел аналогичный опыт: сердце лягушки разрезал на части соответственно расположению пейсмекеров и поместил в физиологический раствор. Каждый участок миокарда автоматически сокращался, но с разной частотой: наибольшей обладал СА-узел. Гаскеллом был сформулирован закон градиента сердца:

Степень автоматии тем выше, чем ближе расположен участок прово-дящей системы к синоатриальному узлу

чем дальше от ведущей части расположен отдел сердца, тем с меньшей частотой он сокращается.

В АВ-узле возникает некоторая задержка проведения возбуждения на 0,02–0,04 с. Вследствие этого возбуждение доходит до пучка Гиса после того, как предсердия успевают перекачать кровь в желудочки.

Атриовентрикулярная задержка возникает в следствии:

Ø Малого диаметра волокон

Ø Множество мелких разветвлений

Ø Наличия синапсов (в других отделах нексусы), что обеспечивает низкую скорость проведения.

Ø Блокирование быстрых повторных импульсов (проведение возбуждения с декрементом)

Скорость распространения возбуждения в миокарде предсердий и желудочков человека составляет 1,0 м/с; в пучке Гиса — 1,5 м/с; волокнах Пуркинье — 3–5 м/с; в АВ-узле — 0,01–0,05 м/с.

Высокая скорость распространения возбуждения в проводящей системе и миокарде способствует синхронному сокращению желудочков, повышает мощность и нагнетательную способность желудочков. Следовательно, проводящая система сердца обеспечивает:

– ритмическую генерацию импульсов,

– последовательность сокращений предсердий и желудочков,

– синхронное сокращение волокон миокарда.

 




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1945; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.