Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Правило трех сигм и его практическое применение

Для оценки варьирования результатов измерений, распределенных по нормальному закону, используют следующие данные:

95% всех результатов попадает в интервал ;

99% всех результатов попадает в интервал ;

99,9% всех результатов попадает в интервал .

В интервал попадает 68,27% результатов.

В интервал попадает 95,45% результатов.

В интервал попадает 99,73% результатов.

Другими словами, отклонение от среднего значения более, чем на 3σ произойдет только в 3-х случаях из 1000. Это соотношение называется правилом трех сигм.

Практические применения правила трех сигм:

1. Для оценки нормальности распределения выборочных данных: вычисляют σ и смотрят, если результаты измерений выходят за пределы , то распределение приближенно считают нормальным.

2. Для выявления ошибочно полученных результатов: если результат измерения более, чем на 3σ отличается от среднего значения, то такой «выброс» считают ошибочно полученным.

3. Для грубого определения σ:

.

<== предыдущая лекция | следующая лекция ==>
Кривая нормального распределения и ее свойства | Основные задачи корреляционного анализа
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 7833; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.