КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метрологические характеристики средств измерений
КЛАССИФИКАЦИЯ СРЕДСТВ ИЗМЕРЕНИЙ КЛАССИФИКАЦИЯ И МЕТОДЫ ТИ Электрические измерения очень разнообразны и это связано с множеством измеряемых физических величин, различным характером их проявления во времени, различными требованиями к точности измерений, различными способами получения результата и т.д. Измерение, согласно определению, предполагает сравнение исследуемой физической величины с однородной физической величиной, значение которой принято за единицу, и представление результата этого сравнения в виде числа. Это многооперационная процедура и для ее выполнения необходимо осуществление следующих измерительных операций: воспроизведения, сравнения, измерительного преобразования, масштабирования. Воспроизведение величины заданного размера — операция создания выходного сигнала с заданным размером информативного параметра, т.е. величиной напряжения, тока, сопротивления, индуктивности и др. Эта операция реализуется средством измерений — мерой. Сравнение — определение соотношения между однородными величинами, осуществляемое путем их вычитания. Эта операция реализуется устройством сравнения (компаратором). Измерительное преобразование — операция преобразования входного сигнала в выходной, реализуемая измерительным преобразователем. Выходные сигналы измерительных преобразователей и их информативные параметры унифицированы государственной системой приборов и средств автоматизации (ГСП). Унифицированными сигналами являются постоянное напряжение 0... 10 В и постоянный ток О... 5, О... 20, 4...20 мА. Масштабирование — создание выходного сигнала, однородного с входным, размер информативного параметра которого пропорционален в.К раз размеру информативного параметра входного сигнала. Масштабное преобразование реализуется в устройстве, которое называется масштабным преобразователем. Классификация измерений. Измерения можно классифицировать по различным признакам: по числу измерений— однократные, когда измерения выполняют один раз, и многократные — ряд однократных измерений физической величины одного -и того же размера; характеристике точности — равноточные — ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью, и неравноточные, когда ряд измерений какой-либо величины выполняется различающимися по точности средствами измерений и в разных условиях; характеру изменения во времени измеряемой величины— статические, когда значение физической величины считается неизменным на протяжении времени измерения, и динамические — измерение изменяющейся по размеру физической величины; способу представления результатов измерений — абсолютные — измерения величины в ее единицах, и относительные — измерения изменений величины по отношению к одноименной величине, принимаемой за исходную. Относительные измерения при прочих равных условиях могут быть выполнены более точно, чем абсолютные, так как в суммарную погрешность не входит погрешность меры величины; способу получения результата измерения — прямые и косвенные. Прямые измерения — измерения, при которых искомое значение физической величины получают непосредственно из опытных данных. К прямым измерениям относится нахождение значения напряжения, тока, мощности по шкале прибора и т.д. Косвенные измерения — определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. При этом числовое значение искомой величины находится расчетным путем, например значение мощности в нагрузке определяется по показаниям амперметра и вольтметра (Р = UI). Хотя косвенные измерения сложнее прямых, они широко применяются в практике измерений, особенно там, где прямые измерения практически невыполнимы, либо тогда, когда косвенное измерение позволяет получить более точный результат по сравнению с прямым измерением. Косвенные измерения в свою очередь делят на совокупные и совместные. Совокупные измерения — проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях. Например, нахождение сопротивлений двух резисторов по результатам измерения сопротивления при последовательном и параллельном их включении; определение массы отдельных гирь набора по известному значению массы одной из них и по результатам прямых сравнений масс различных сочетаний этих гирь. Совместные измерения — проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними. Числовые значения искомых величин, как и в случае совокупных измерений, находят из системы уравнений, связывающих значения искомых величин со значениями величин, измеренных прямым (или косвенным) способом. Число уравнений должно быть не меньше числа искомых величин. Например, по результатам прямых измерений значений сопротивления терморезистора при двух различных температурах решением системы уравнений рассчитывают необходимые значения коэффициентов. Методы измерения. Методы измерения можно классифицировать по различным признакам: по физическому принципу, положенному в основу измерения — электрические, механические, магнитные, оптические и т.д.; степени взаимодействия средства и объекта измерения — контактный и бесконтактный. Например, измерение температуры тела термометром сопротивления (контактный) и объекта пирометром (бесконтактный). режиму взаимодействия средства и объекта измерения — статические и динамические; виду измерительных сигналов — аналоговые и цифровые; организации сравнения измеряемой величины с мерой— методы непосредственной оценки и сравнения. Метод непосредственной оценки (отсчета) — метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений. Он отличается своей простотой, но невысокой точностью. Метод сравнения с мерой — метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Эти методы сложны, но характеризуются высокой точностью. Их подразделяют на дифференциальные, нулевые, противопоставления, замещения и совпадений. Дифференциальный (разностный) метод — метод измерений, при котором измеряемая величина сравнивается с однородной величиной, незначительно отличающейся от измеряемой величины, и при котором измеряется разность между этими двумя величинами. Точность метода возрастает с уменьшением разности между сравниваемыми величинами. Нулевой метод — метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Например, измерение электрического сопротивления мостом с полным его уравновешиванием. Метод измерения замещением.— метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины. Метод используют, например, при измерении индуктивности, емкости. Метод совпадений — метод, при котором измеряют разность между искомой величиной и образцовой мерой, используя совпадения отметок или периодических сигналов. Метод применяют, например, для измерения перемещений, периода, частоты.
Средство измерений (СИ) — техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени. Данное определение раскрывает суть средства измерений, заключающуюся, во-первых, в «умении» хранить (или воспроизводить) единицу физической величины; во-вторых, в неизменности размера хранимой единицы. Эти важнейшие факторы и обусловливают возможность выполнения измерения (сопоставление с единицей), т.е. «делают» техническое средство средством измерений. Если размер единицы в процессе измерений изменяется более чем установлено нормами, таким средством нельзя получить результат с требуемой точностью. Это означает, что измерять можно лишь тогда, когда техническое средство, предназначенное для этой цели, может хранить единицу, достаточно неизменную по размеру (во времени). Средства измерений классифицируют в зависимости от назначения и метрологических функций. По назначению СИ подразделяются на меры, измерительные преобразователи, измерительные приборы, измерительные установки и измерительные системы. Мера — средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью. Различают меры: · однозначные — воспроизводящие физическую величину одного размера (например, ЭДС нормального элемента равна 1,0185 В); · многозначные — воспроизводящие физическую величину разных размеров (например, штриховая мера длины); · набор мер — комплект мер разного размера одной и той же физической величины, предназначенных для практического применения как в отдельности, так и в различных сочетаниях (например, набор концевых мер длины); · магазин мер — набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях (например, магазин электрических сопротивлений). Измерительный преобразователь — техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину, или измерительный сигнал, удобный для обработки. Это преобразование должно выполняться с заданной точностью и обеспечивать требуемую функциональную зависимость между выходной и входной величинами преобразователя. Измерительный преобразователь или входит в состав какого-либо измерительного прибора (измерительной установки, измерительной системы и др.), или применяется вместе с каким-либо средством измерений. Измерительные преобразователи могут быть классифицированы по различным признакам, например: по характеру преобразования различают следующие виды измерительных преобразователей: электрических величин в электрические (шунты, делители напряжения, измерительные трансформаторы и пр.); магнитных величин в электрические (измерительные катушки, феррозонды, преобразователи, основанные на эффектах Холла, Гаусса, сверхпроводимости и т.д.); неэлектрических величин в электрические (термо- и тензопреобразователи, реостатные, индуктивные, емкостные и т.д.); месту в измерительной цепи и функциям различают первичные, промежуточные, масштабные и передающие преобразователи. Измерительный прибор — средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Измерительные приборы подразделяются: · по форме регистрации измеряемой величины — на аналоговые и цифровые; · применению — амперметры, вольтметры, частотомеры, фазометры, осциллографы и т.д.; · назначению — приборы для измерения электрических и неэлектрических (магнитных, тепловых, химических и др.) физических величин; · действию — интегрирующие и суммирующие; · способу индикации значений измеряемой величины — показывающие, сигнализирующие и регистрирующие; · методу преобразования измеряемой величины — непосредственной оценки (прямого преобразования) и сравнения; · способу применения и по конструкции—щитовые, переносные, стационарные; · защищенности от воздействия внешних условий — обыкновенные, влаго-, газо-, пылезащищенные, герметичные, взрывобезопасные и др. Измерительные установки (ИУ) — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте. Измерительную установку, применяемую для поверки, называют поверочной установкой, а входящую в состав эталона — эталонной установкой. Некоторые большие измерительные установки называют измерительными машинами, например, установки для измерений удельного сопротивления электротехнических материалов; для испытаний магнитных материалов. Измерительная система (ИС) — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях. В зависимости от назначения измерительные системы подразделяют на информационные, контролирующие, управляющие и др. Например, радионавигационная система для определения местоположения различных объектов, состоящая из ряда измерительно-вычислительных комплексов, разнесенных в пространстве на значительное расстояние друг от друга. Измерительно-вычислительный комплекс (ИВК) — функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи. По метрологическим функциям СИ подразделяются на эталоны и рабочие средства измерений. Эталон единицы физической величины — средство измерений (или комплекс средств измерений), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме средствам измерений и утвержденное в качестве эталона в установленном порядке. Конструкция эталона, его свойства и способ воспроизведения единицы определяются природой данной физической величины и уровнем развития измерительной техники в данной области измерений. Эталон должен обладать, по крайней мере, тремя тесно связанными друг с другом существенными признаками — неизменностью, воспроизводимостью и сличаемостью. Неизменность — свойство эталона удерживать неизменным размер воспроизводимой им единицы физической величины длительное время. При этом все изменения, зависящие от внешних условий, должны быть строго определенными функциями величин, доступных точному измерению. Реализация этих требований привела к идее создания «естественных» эталонов, основанных на физических постоянных. Воспроизводимость — возможность воспроизведения единицы физической величины с наименьшей погрешностью для существующего уровня развития измерительной техники. Слачвемость — возможность обеспечения сличения с эталоном других средств измерений, нижестоящих по поверочной схеме, в первую очередь вторичных эталонов, с наивысшей точностью для существующего уровня развития измерительной техники. По соподчинению эталоны подразделяются на международные эталоны, первичные, вторичные. Международный эталон — эталон, принятый по международному соглашению в качестве международной основы для согласования с ним размеров единиц, воспроизводимых и хранимых национальными эталонами. Международные эталоны хранятся в Международном бюро мер и весов (МБМВ) в г. Севре вблизи Парижа и служат для сличения с первичными эталонами крупнейших метрологических лабораторий разных стран. Первичные (национальные) эталоны — эталоны, признанные официальным решением служить в качестве исходных для страны. Они хранятся в национальных лабораториях различных стран и предназначены для калибровки в этих лабораториях вторичных эталонов. Данное определение по существу совпадает с определением понятия «государственный эталон». Это свидетельствует о том, что термины «государственный эталон» и «национальный эталон» отражают одно и то же понятие. Вследствие этого термин «национальный эталон» применяют при проведении сличения эталонов, принадлежащих отдельным государствам, с международным эталоном или при проведении так называемых «круговых» сличений эталонов ряда стран. Вторичные эталоны — эталоны, получающие размер единицы непосредственно от первичного эталона данной единицы. Они хранятся в различных отраслевых испытательных лабораториях и используются для контроля и калибровки рабочих эталонов. По метрологическому назначению вторичные эталоны подразделяются на исходный, сравнения и рабочий. Исходный эталон — эталон, обладающий наивысшими метрологическими свойствами (в данной лаборатории, организации, на предприятии), от которого передают размер единицы подчиненным эталонам и имеющимся средствам измерений. Исходным эталоном в стране служит первичный эталон, исходным эталоном для республики, региона, министерства (ведомства) или предприятия может быть вторичный или рабочий эталон. Вторичный, или рабочий, эталон, являющийся исходным эталоном для министерства (ведомства), нередко называют ведомственным эталоном. Эталоны, стоящие в поверочной схеме ниже исходного эталона, обычно называют подчиненными эталонами. Эталон сравнения — эталон, применяемый для сличений эталонов, которые по тем или иным причинам не могут быть непосредственно сличены друг с другом. Рабочий эталон — эталон, предназначенный для передачи размера единицы рабочим средствам измерений. Термин рабочий эталон заменил собой термин образцовое средство измерений (ОСИ) с целью упорядочения терминологии и приближения ее к международной. При необходимости рабочие эталоны подразделяют на разряды (1-й, 2-й,..., n-й), как это было принято для ОСИ. В этом случае передачу размера единицы осуществляют через цепочку соподчиненных по разрядам рабочих эталонов. При этом от последнего рабочего эталона в этой цепочке размер единицы передают рабочему средству измерений. Совокупность государственных первичных и вторичных эталонов, являющаяся основой обеспечения единства измерений в стране, составляет эталонную базу страны. Число эталонов не является постоянным, а изменяется в зависимости от потребностей экономики страны. Ясно, что перечень эталонов не совпадает с измеряемыми физическими величинами, хотя прослеживается постепенное увеличение их числа из-за постоянного развития рабочих средств измерений. Эталонная база России насчитывает более 150 государственных эталонов. Она включает в себя эталоны механических величин — массы, длины и времени; электрических величин — тока, емкости, напряжения; магнитных величин — индуктивности, магнитного потока; тепловых величин — температуры; световых величин — силы света и др. Рабочее средство измерений — это средство измерений, используемое в практике измерений и не связанное с передачей единиц размера физических величин другим средствам измерений. Рабочее средство измерений в свою очередь бывает основным и вспомогательным. Основное средство измерений — средство измерений той физической величины, значение которой необходимо получить в соответствии с измерительной задачей. Вспомогательное средство измерений — средство измерений той физической величины, влияние которой на основное средство измерений или объект измерений необходимо учитывать для получения результатов измерений требуемой точности (например, термометр для измерения температуры газа в процессе измерений объемного расхода этого газа). В практике измерений встречаются понятия стандартизованного и нестандартизованного средств измерений. Стандартизованное средство измерений — средство измерений, изготовленное и применяемое в соответствии с требованиями государственного или отраслевого стандарта. Обычно стандартизованные средства измерений подвергают испытаниям и вносят в Государственный реестр. Нестандартизованное средство измерений — средство измерений, стандартизация требований к которому признана нецелесообразной. Классификация средств измерения представлена на рисунке 1.
Рис1. Классификация средств измерения
ЛЕКЦИЯ 2 План лекции: 1. Метрологические характеристики средств измерений 2. Классификация погрешностей
Все средства измерений имеют общие свойства, позволяющие сопоставлять их между собой: метрологические, эксплуатационные, информационные и др. Отдельные виды и типы СИ обладают своими специфическими свойствами, которые отражаются в соответствующих нормативно-технических документах. Поэтому важно уметь выделять и оценивать составляющую погрешности, вносимую используемыми средствами измерений по их метрологическим характеристикам. Метрологическая характеристика средства измерений — характеристика одного из свойств средства измерений, влияющая на результат и погрешность его измерений. Для каждого типа СИ устанавливают свои метрологические характеристики. Метрологические характеристики, устанавливаемые нормативно-техническими документами, называют нормируемыми метрологическими характеристиками, а определяемые экспериментально — действительными метрологическими характеристиками. К метрологическим характеристикам относятся функция преобразования, погрешность средства измерений, чувствительность, цена деления шкалы, порог чувствительности, диапазон измерений, вариация показаний и др. От того, насколько они точно будут выдержаны при изготовлении и стабильны при эксплуатации, зависит точность результатов, получаемая с помощью СИ. Функция преобразования (статическая характеристика преобразования) — функциональная зависимость между информативными параметрами выходного и входного сигналов средства измерений. Функцию преобразования, принимаемую для средства измерения (типа) и устанавливаемую в научно-технической документации на данное средство (тип), называют номинальной функцией преобразования средства (типа). Номинальная статическая характеристика преобразования позволяет рассчитать значение входной величины по значению выходной. Она может задаваться аналитически, таблично или графически. Погрешность СИ — важнейшая метрологическая характеристика, определяемая как разность между показанием средства измерений и истинным (действительным) значением измеряемой величины. Для меры показанием является ее номинальное значение. Чувствительность СИ — свойство средства измерений, определяемое отношением изменения выходного сигнала этого средства к вызывающему его изменению измеряемой величины. Различают абсолютную и относительную чувствительность. Абсолютную чувствительность определяют по формуле: относительную чувствительность — по формуле: где — изменение сигнала на выходе; — изменение измеряемой величины, — измеряемая величина. При нелинейной статической характеристике преобразования чувствительность зависит от X, при линейной характеристике она постоянна. У измерительных приборов при постоянной чувствительности шкала равномерная, т.е. расстояние между соседними делениями шкалы одинаковое. Цена деления шкалы (постоянная прибора) — разность значения величины, соответствующая двум соседним отметкам шкалы СИ. Приборы с равномерной шкалой имеют постоянную цену деления. В приборах с неравномерной шкалой цена деления может быть разной на разных участках шкалы, и в этом случае нормируется минимальная цена деления. Цена деления шкалы равна числу единиц измеряемой величины, приходящихся на одно деление шкалы прибора, и может быть также определена через абсолютную чувствительность:
Порог чувствительности — наименьшее значение изменения физической величины, начиная с которого может осуществляться ее измерение данным средством. Порог чувствительности выражают в единицах входной величины. Диапазон измерений — область значений величины, в пределах которой нормированы допускаемые пределы погрешности СИ. Значения величины, ограничивающие диапазон измерений снизу и сверху (слева и справа), называют соответственно нижним и верхним пределом измерений. С целью повышения точности измерений диапазон измерений СИ можно разбить на несколько поддиапазонов. При переходе с одного поддиапазона на другой некоторые составляющие основной погрешности уменьшаются, что приводит к повышению точности измерений. При нормировании погрешности допускают для каждого поддиапазона свои предельные значения погрешности. Область значений шкалы прибора, ограниченную начальными и конечными значениями шкалы, называют диапазоном показаний. Для средства измерений, выдающих результаты измерений в цифровом коде, указывают цену единицы младшего разряда (единицы младшего разряда цифрового отсчетного устройства), виц выходного кода (двоичный, двоично-десятичный) и число разрядов кода. Для оценки влияния средства измерений на режим работы объекта исследования указывают входное полное сопротивление . Это сопротивление влияет на мощность, потребляемую от объекта исследования средством измерения. Допустимая нагрузка на средство измерений зависит от выходного полного сопротивления .Чем меньше выходное сопротивление, тем больше допустимая нагрузка на средство измерений. Вариация показаний — наибольшая вариация выходного сигнала прибора при неизменных внешних условиях. Она является следствием трения и люфтов в узлах приборов, механического и магнитного гистерезиса элементов и др. Вариация выходного сигнала — это разность между значениями выходного сигнала, соответствующими одному и тому же действительному значению входной величины при медленном подходе слева и справа к выбранному значению входной величины. Динамические характеристики, т.е. характеристики инерционных свойств (элементов) измерительного устройства, определяющие зависимость выходного сигнала СИ от меняющихся во времени величин: параметров входного сигнала, внешних влияющих величин, нагрузки. К ним относят дифференциальное уравнение, описывающее работу средства измерений; переходную и импульсную переходную функции, амплитудные и фазовые характеристики, передаточную функцию. Динамические свойства средства измерений определяют динамическую погрешность. Динамическая погрешность средства измерений — погрешность средства измерений, возникающая при измерении изменяющейся (в процессе измерений) физической величины. Нормируемые метрологические характеристики — совокупность метрологических характеристик данного типа средств измерений, устанавливаемая нормативными документами на средства измерений. Нормируемые метрологические характеристики, включаемые в этот комплекс, должны отражать реальные свойства СИ, и их номенклатура должна быть достаточной для оценки инструментальной составляющей погрешности измерений в рабочих условиях применения СИ с той степенью достоверности, которая требуется для решения поставленной измерительной задачи. Общий перечень нормируемых метрологических характеристик СИ, формы их представления и способы нормирования устанавливаются ГОСТом. В него могут входить: • пределы измерений, пределы шкалы; • цена деления равномерной шкалы аналогового прибора или многозначной меры, при неравномерной шкале — минимальная цена деления; • выходной код, число разрядов кода, номинальная цена единицы наименьшего разряда цифровых СИ; • номинальное значение однозначной меры, номинальная статическая характеристика преобразования измерительного преобразователя; • погрешность СИ; • вариация показаний прибора или выходного сигнала преобразователя; • полное входное сопротивление измерительного устройства, полное выходное сопротивление измерительного преобразователя или меры; • неинформативные параметры выходного сигнала измерительного преобразователя или меры; • динамические характеристики СИ; функции влияния. Кроме метрологических характеристик при эксплуатации средств измерений важны и неметрологические характеристики: показатели надежности, электрическая прочность, сопротивление изоляции, устойчивость к климатическим и механическим воздействиям, время установления рабочего режима и др. Надежность средства измерений — это способность СИ сохранять нормированные характеристики при определенных условиях работы в течение заданного времени. Основными критериями надежности приборов являются вероятность и средняя продолжительность безотказной работы. Вероятность безотказной работы определяется вероятностью отсутствия отказов прибора в течение определенного промежутка времени. Средняя продолжительность — отношение времени работы прибора к числу отказов за это время.
Дата добавления: 2014-01-20; Просмотров: 5481; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |