Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Материалов. Взаимосвязь между составом, структурой, свойствами и применением




Взаимосвязь между составом, структурой, свойствами и применением

Основные свойства строительных материалов

Лекция № 1

 

1. Классификация свойств строительных материалов.

2. Взаимосвязь между составом, структурой, свойствами и применением материалов.

3. Понятие марки в строительном материаловедении.

4. Свойства строительных материалов

а) физические

в) механические

б) химические и физико-химические

в) технологические

г) общие эксплуатационные

 

Классификация строительных материалов

Существует несколько классификаций используемых в строительном материаловедении

1. Общая классификация по виду используемого сырья и методу обработки.

а) минеральные

б) органические

в) смешанные

Кроме того, в каждой группе материалы могут подразделяться по виду технологической переработки.

1) механическая обработка

2) термическая обработка

3) химико-термическая обработка

4) металлургическая обработка

 

2. По степени переработки и готовности материалов.

а) полуфабрикаты или продукты готовые для дальнейшего использования

б) материалы

в) изделия

г) конструкции

д) сооружения или объекты строительства

 

3. Подразделение по конструктивным свойствам

а) конструктивные материалы – основная функция переносить нагрузки

б) конструктивно – отделочные

в) самонесущие

 

Знание строения строительного материала необходимо для понимания его свойств и в конечном итоге для решения практи­ческого вопроса, где и как применить материал, чтобы получить наибольший технико-экономический эффект.

Строение материала изучают на трех уровнях: 1) макрострук­тура материала - строение, видимое невооруженным глазом; 2) микроструктура материала - строение видимое в оптический микроскоп; 3) внутреннее строение веществ, составляющих мате­риал, на молекулярно-ионном уровне, изучаемом методами рентгено-структурного анализа, электронной микроскопии и т.п.

Макроструктура твердых строительных материалов* может быть следующих типов: конгломератная, ячеистая, мелкопорис­тая, волокнистая, слоистая, рыхлозернистая (порошкообразная).

Искусственные конгломераты - это обширная группа, объе­диняющая бетоны различного вида, ряд керамических и других материалов.

Ячеистая структура характеризуется наличием макропор, свойственных газо- и пенобетонам, ячеистым пластмассам.

Мелкопористая структура свойственна, например, керамиче­ским материалам, поризованным способами высокого водозатворения и введением выгорающих добавок.

Волокнистая структура присуща древесине, стеклопласти­кам, изделиям из минеральной ваты и др. Ее особенностью явля­ется резкое различие прочности, теплопроводности и других свойств вдоль и поперек волокон.

Слоистая структура отчетливо выражена у рулонных, лис­товых, плитных материалов, в частности у пластмасс со слоистым наполнителем (бумопласта, текстолита и др.).

Рыхло-зернистые материалы - это заполнители для бетона, зернистые и порошкообразные материалы для мастичной тепло­изоляции, засыпок и др.

Микроструктура веществ, составляющих материал, может быть кристаллическая и аморфная. Кристаллические и аморфные формы нередко являются лишь различными состояниями одного и того же вещества. Примером служит кристаллический кварц и различные аморфные формы кремнезема. Аморфная форма вещества может перейти в более устойчивую кристаллическую форму.

Практическое значение для природных и искусственных ма­териалов имеет явление полиморфизма - когда одно и то же веще­ство способно существовать в различных кристаллических фор­мах, называемых модификациями. Наблюдаются, например, по­лиморфные превращения кварца, сопровождающиеся изменением объема.

Особенностью кристаллического вещества является опреде­ленная температура плавления (при постоянном давлении) и оп­ределенная геометрическая форма кристаллов каждой его моди­фикации.

Свойства монокристаллов неодинаковы в разных направле­ниях. Это механическая прочность, теплопроводность, скорость растворения, электропроводность и др. Явление анизотропии яв­ляется следствием особенностей внутреннего строения кристал­лов.

В строительстве применяют поликристаллические каменные материалы, в которых разные кристаллы ориентированы беспо­рядочно. Подобные материалы рассматриваются как изотропные по своим строительно-техническим свойствам. Исключение со­ставляют слоистые каменные материалы (гнейсы, сланцы и др.).

Внутреннее строение веществ, составляющих материал, опре­деляет механическую прочность, твердость, тугоплавкость и дру­гие важные свойства материала.

Кристаллические вещества, входящие в состав строительного материала, различают по характеру связи между частицами, об­разующими пространственную кристаллическую решетку. Она может быть образована: нейтральными атомами (одного и того же элемента, как в алмазе, или различных элементов, как в SiO2); ионами (разноименно заряженными, как в СаСО3, или одноимен­ными, как в металлах); целыми молекулами (кристаллы льда).

Ковалентная связь осуществляется обычно электронной па­рой, образуется в кристаллах простых веществ (алмаз, графит) и в кристаллах некоторых соединений из двух элементов (кварц, кар­борунд, другие карбиды, нитриды). Такие материалы выделяются очень высокой механической прочностью и твердостью, они весьма тугоплавки.

Ионные связи образуются в кристаллах тех материалов, в ко­торых связь имеет преобладающе ионный характер. Распростра­ненные строительные материалы этого типа гипс и ангидрид имеют невысокую прочность и твердость, не водостойки.

В сложных кристаллах, часто встречающихся в строительных материалах (кальцит, полевые шпаты), осуществляются и ковалентная и ионная связи. Внутри сложного иона СО связь ковалентная, но сам он имеет с ионами Са2+ ионную связь. Свойства подобных материалов весьма разнообразны. Кальцит СаСОз при достаточно высокой прочности обладает малой твердостью. У полевых шпатов сочетаются довольно высокие показатели проч­ности и твердости, хотя и уступающие кристаллам алмаза с чисто ковалентной связью.

Молекулярные кристаллические решетки и соответствующие им молекулярные связи образуются преимущественно в кристал­лах тех веществ, в молекулах которых связи являются ковалент-ными. Кристалл этих веществ построен из целых молекул, кото­рые удерживаются друг около друга сравнительно слабыми ван-дер-ваальсовыми силами межмолекулярного притяжения (как в кристаллах льда). При нагревании связи между молекулами легко разрушаются, поэтому вещества с молекулярными решетками обладают низкими температурами плавления.

Силикаты, занимающие особое место в строительных мате­риалах, имеют сложную структуру, обусловившую их особенно­сти. Так, волокнистые материалы (асбест) состоят из параллель­ных силикатных цепей, связанных между собой положительными ионами, расположенными между цепями. Ионные силы слабее ковалентных связей внутри каждой цепи, поэтому механические воздействия, недостаточные для разрыва цепей, разделяют такой материал на волокна. Пластинчатые минералы (слюда, каолинит) состоят из силикатных групп, связанных в плоские сетки.

Состав и свойства

Строительный материал характеризуется химическим, мине­ральным и фазовым составом.

Химический состав строительных материалов позволяет су­дить о ряде свойств материала; огнестойкости атмосферостойкости, механических и других технических характеристиках. Химиче­ский состав неорганических веществ (цемента, извести и др.) и каменных материалов удобно выражать количеством содержа­щихся в них оксидов (%). Основные и кислотные оксиды химиче­ски связаны между собой и образуют минералы, которые и опре­деляют многие свойства материала.

Минеральный состав показывает, какие минералы и в каком количестве содержатся в вяжущем веществе или в каменном мате­риале. Например, в портландцементе содержание трехкальциевого силиката составляет 45-60%, причем при большем его количестве ускоряется твердение, повышается прочность це­ментного камня.

Фазовый состав материала указывает на содержание фаз входящих в состав материала и фазовые переходы. Например жидкая и твердые фазы.




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 637; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.