КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Поверхностный интеграл второго рода
Поверхность называется ориентируемой, если в каждой ее точке существует вектор нормали к , - непрерывная вектор – функция на . Поверхность называется односторонней, если при обходе поверхности по контуру g вектор нормали меняет свое направление на противоположное. Поверхность называется двусторонней, если при обходе поверхности по контуру g вектор нормали не меняет свое направление. Примером односторонней поверхности является петля Мебиуса, примерами двусторонних поверхностей – плоскость, сфера, гиперболоиды и т.д.
Задача о потоке жидкости через поверхность.
Поток жидкости через поверхность .– это количество жидкости, протекающее через поверхность в единицу времени.
Здесь мы вычисляли дифференциал потока, а затем интегрировали по всей поверхности – это метод дифференциалов при построении интеграла. Можно строить интеграл с помощью метода интегральных сумм, как мы действовали обычно. - Введем разбиение области на элементы так, чтобы соседние элементы не содержали общих внутренних точек (условие А), - на элементах разбиения отметим точку М. Предполагая перемещение частиц жидкости постоянным на элементе и равным (M), вычислим приближенно поток через элемент разбиения и просуммируем его по элементам, получая интегральную сумму . - Измельчим разбиение при условии (условие В) и перейдем к пределу получая поверхностный интеграл второго рода . По виду это – поверхностный интеграл первого рода, он и имеет те же свойства, что поверхностный интеграл первого рода, но имеет еще и свойство ориентируемости. Интеграл по внешней стороне поверхности отличается знаком от интеграла по внутренней стороне поверхности, так как на различных сторонах поверхности нормали в той же точке нормали направлены по одной прямой в различные стороны. Теорема существования формулируется так же, как для поверхностного интеграла первого рода с тем же замечанием о независимости интеграла от способа выбора разбиения (лишь бы выполнялись условия А), от выбора точек на элементах разбиения, от способа измельчения разбиения (лишь бы выполнялось условие В).
Дата добавления: 2014-01-20; Просмотров: 318; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |