Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интегральная оценка средней и дисперсии

Интегральной называют оценку, которая определяется двумя числами- концами интервала. Интегральная оценка позволяет установить точность и надежность оценок.

Пусть даны - параметр генеральной совокупности и - его оценка.

Тогда точность определения параметра тем выше, чем меньше величина , т.е. если и , то, чем меньше , тем выше точность оценки.

Надежностью (или доверительной вероятностью) оценки называют вероятность , с которой осуществляется неравенство , т.е. .

Т.е. это вероятность того, что отклонение оценки от истинного значения параметра будет не больше установленной величины .

Обычно задают для практических задач доверительную вероятность . Из неравенства следует, что:

Интервал () называют доверительным интервалом. Этот интервал показывает параметр с заданной доверительной вероятностью .

С вероятностью можно утверждать, что будет в доверительном интервале.

<== предыдущая лекция | следующая лекция ==>
Оценка генеральной дисперсии по исправленной и выборочной дисперсии | Построение доверительного интервала
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 837; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.