Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Преобразования Галилея




 

РИС. 2-3

 

Система K¢ движется со скоростью относительно K.

 

Равенство означает абсолютность времени. Это особенность классической механики вообще, когда предполагается, что - скорость передачи сигнала бесконечна.

Преобразование скоростей

РИС. 2-4

; .

Дифференцируя по времени, находим закон преобразования скоростей.

- скорость в неподвижной системе отсчета;

- скорость в движущейся системе отсчета.

Так как , то .

Подставив , получаем .

Преобразование ускорений

.

- ускорение инвариантно относительно преобразований Галилея.

Показать самостоятельно, что расстояние между двумя точками инвариантно относительно преобразований Галилея:

(это легко сделать, если вспомнить, как определяется расстояние между двумя точками в декартовой системе.)

 

2-ой закон Ньютона и преобразования Галилея

Основной закон динамики (2-ой закон Ньютона) инвариантен относительно преобразований Галилея.

Рассмотрим преобразование второго закона Ньютона .

Ускорение инвариантно относительно преобразований Галилея.

Стоящая справа сила всегда является функцией инвариантных величин: или расстояний между точками, или разности скоростей взаимодействующих частиц.

Например, упругие силы:

.

В движущейся системе координат :

Итак, 2-ой закон Ньютона (основное уравнение динамики) инвариантен относительно преобразований Галилея: .

Уравнения механики Ньютона инвариантны относительно преобразований Галилея - принцип относительности Галилея.

Обобщение: законы природы одинаковы (инвариантны) во всех ИСО.

Точнее (по Эйнштейну):

законы природы, по которым изменяются состояния физических систем, не зависят от того, к какой из ИСО относятся эти изменения.

Сказанное справедливо при любых скоростях относительного движения, однако при (строго говоря, вместо знака равно нужно использовать знак приблизительно!) нужно применять уже не преобразования Галилея, а преобразования Лоренца.

Движение, впрочем, может по-разному выглядеть в различных ИСО:

РИС. 2-5

 

Траектория свободно падающей материальной точки :

-прямая вертикальная линия для наблюдателя в вагоне;

-парабола для внешнего наблюдателя.

 

Покажем продуктивность высказанных соображений; выведем, пользуясь принципом относительности Галилея, уравнение движения тела переменной массы, например ракеты или реактивного снаряда.

РИС. 2-6

 

Воспользуемся приближением материальной точки.

Формулировка задачи: в момент материальная точка P имеет массу ; присоединяемая (отделяемая) масса имеет скорость .

Введем инерциальную систему , скорость которой равна скорости точки в момент , т.е. точка покоится в ИСО (сопутствующая ИСО).

За интервал времени (от до ) материальная точка приобретет импульс . Этот импульс точка получает, во-первых, за счет действия внешних сил и, во-вторых, за счет присоединения (отделения) массы :

.

Поделив на , получаем

- уравнение Мещерского.

Мещерский Иван Всеволодович (1859 -1935 г.г.) – советский ученый в области теоретической и прикладной механики. В 1882 г. окончил физико-математический факультет Санкт-Петербургского университета, с 1890 г. – приват-доцент кафедры механики, с 1902 г. – заведующий кафедрой
Санкт-Петербургского, затем Ленинградского политехнического института. Основополагающие труды по механике тел переменной массы, ставшие основой решения различных проблем реактивной техники, небесной механики. Последовательно проводил в жизнь идею тесной связи теоретической и прикладной механики.

Полученное в одной конкретной инерциальной системе (сопутствующая ИСО), это уравнение - в силу принципа относительности Галилея - справедливо в любой другой ИСО.

Слагаемое - реактивная сила.

Если (потеря массы) и направлена в сторону, противоположную , то - реактивная сила вызывает ускорение материальной точки.

 

Два частных случая

Случай 1 = 0.

Уравнение похоже на основное уравнение динамики, но с массой, зависящей от времени:

(под подразумевается равнодействующая всех сил, действующих на материальную точку).

Случай 2 ,

(в этом случае действие силы определяет изменение импульса тела с переменной массой).

 

Закон сохранения массы

Мы говорили о сохранении массы (числа частиц и т.п.), исходя из релятивистской связи между массой и энергией. Обоснуем закон, исходя из принципа относительности Галилея.

Пусть два тела (две материальные точки) с массами и сталкиваются между собой и превращаются в единое тело (материальную точку) с массой (пластилиновые шары, химическая или ядерная реакция). Спрашивается, какова будет масса составного тела. Покажем, что .

Рассматриваем движение тел в некоторой «покоящейся» системе . Пусть скорости до столкновения - и , после столкновения скорость составного тела - .

Из закона сохранения импульса следует:.

В системе отсчета (движущейся со скоростью ) скорости соответственно
, , а закон сохранения импульса справедлив с прежней силой:

.

Скорости в системе :

, , .

Отсюда

.

Принимая во внимание закон сохранения импульса в системе , получаем:

- свойство аддитивности массы.

Если в результате химической реакции из нескольких различных атомов получается несколько иных молекул, то можно обобщить: сумма масс веществ до реакции равна сумме масс веществ после реакции.

Однако это соотношение верно лишь приближенно, так как принцип относительности Галилея является частным случаем принципа относительности Эйнштейна (при «). Релятивистская теория требует в балансе масс учитывать и энергию.

Для случая химических реакций поправка пренебрежимо мала.

Пример

C + O2 → CO2 + 4∙1012эрг.

12 г 32 г 44г

Дефект массы: г.

Относительная погрешность .

В случае ядерных реакций (деления или синтеза) энергетический выход значительно больше, так что и дефект массы - вполне заметная, существенная величина.

 

Теорема о движении центра масс

Для любой материальной точки ,

иначе , где - количество движения.

Для системы материальных точек количество движения:

.

Введем понятие центра масс системы:

это такая воображаемая точка, радиус-вектор которой задается через
радиусы-векторы и массы всех точек системы следующим образом:

, где - полная масса системы.

Продифференцируем по и умножим на :

; - скорость движения центра масс.

Þ.

Центр масс системы материальных точек движется как материальная точка, масса которой равна суммарной массе всей системы, а действующая сила - векторной сумме всех внешних сил, действующих на систему.

 

Если система материальных точек является замкнутой, то сумма всех внешних сил .

Следовательно, Þ .

Центр масс замкнутой системы движется равномерно и прямолинейно.

Понятие о приведенной массе

РИС. 2-7

Пусть система состоит из двух материальных точек с массами m 1 и m 2. Уравнения движения этих двух точек: , .

Вычитая из второго уравнения первое, находим:

.

Если система замкнутая, то внешние силы отсутствуют и, в соответствии с 3-им законом Ньютона, .

Учитывая, что , получаем:

.

Вводя обозначение ,

получаем уравнение: , где - приведенная масса.

Уравнение описывает движение частиц вокруг общего центра масс.

Если, например, , то, поделив на числитель и знаменатель, получаем:

- движение легкой частицы вокруг тяжелой.

Приведенная масса – целесообразное обозначение, облегчающее решение ряда задач.

 

Эффект Мессбауэра (ядерный - резонанс) как яркий пример законов сохранения

(данный материал можно пропустить)

 

 

РИС. 2-8

 

Испускание (или поглощение) - кванта с энергией атомным ядром при переходе из состояния в состояние .

Разность внутренних энергий ядра ћw (w - частота); разность импульсов , - волновой вектор - кванта (- волновое число).

Изменение полной энергии ядра:

,

,

,

,

, , Þ .

Если бы излучающее ядро оставалось неподвижным, то излучаемая частота определялась бы только разностью внутренних энергий в начальном и конечном состояниях . Однако ядро приобретает так называемую отдачу , причем могут встречаться скорости ~10-4.

Итак, излучаемая энергия зависит от скорости излучающего ядра, причем ядра могут получать различные скорости , значит будут излучаться различные
- кванты. Спектр будет состоять из набора линий, соответствующих различным скоростям атомов – фактически из широкой полосы, отражающей распределение атомов по скоростям отдачи. Однако, если поместить излучающие ядра (атомы) в кристалл, поставив их в условия, когда они не могли бы передавать энергию колебаниям решетки (для этого нужно, чтобы энергия - квантов была не слишком велика, кэВ, а температура кристалла достаточно низка, 100 K), то в этом случае обмен импульсом будет происходить с кристаллом в целом. При этом уравнение сохранения энергии нужно переписать так:

. Здесь - макроскопическая величина, - пренебрежимо малая величина.

Получается чрезвычайно узкая линия, ее относительная ширина в первых опытах достигала 10-10, сейчас меньше 10-15, так что с помощью эффекта Мессбауэра удается наблюдать одно из следствий общей теории относительности (ОТО) - влияние гравитационного поля Земли на частоту излучения.

 

Рудольф Людвиг Мессбауэр (родился 31.01.1929 г. в Мюнхене) – Нобелевская премия 1961 г. «за исследование резонансного поглощения - излучения и открытие эффекта, названного его именем».

Работа и энергия

Работа силы на перемещении производится проекцией (составляющей) силы на это направление :

- скалярное произведение.

В зависимости от направления силы по отношению к перемещению (т.е. от знака проекции ) знак работы будет разным - положительным, отрицательным, или работа будет равна нулю при .

 

РИС. 2-9

Работа силы на траектории между точками 1 и 2 равна сумме работ на элементарных отрезках (вся траектория разбивается на участки , такие, что они хорошо аппроксимируют криволинейную траекторию отрезками прямых линий):

РИС. 2-10

- криволинейный интеграл вектора по траектории .

 

РИС. 2-11

 

 

().

На участке 1-2 совершена работа.

 


Можно записать работу и по-другому:

(второй закон Ньютона), , отсюда

.

Если , то .

Для конечных перемещений:

- работа равнодействующей нескольких сил равна сумме работ каждой из этих сил.

Размерности:

1 Н × 1м = 1 Дж; 1 дина ×1 см = 1 эрг; 1 Дж = 107 эрг;

1 эВ = 1.602 × 10-12 эрг – энергия, приобретаемая электроном при прохождении разности потенциалов 1 В. 1 кэВ = 103 эВ, 1 МэВ = 106 эВ.

Мощность: [Дж /с = Вт ]; .

Поскольку работу можно записать в виде , то в случае массы, не зависящей от скорости, то есть в нерелятивистском приближении, .

Поскольку , при выполнении работы по перемещению точки с массой из положения 1 в положение 2 (скорости соответственно и ) имеем:

.

Кинетическая энергия материальной точки:

.

Таким образом, .




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1558; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.