Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема: Вариационные ряды и их характеристики

Лекции по математической статистике

  1. Вариационный ряд. Основные понятия

Математическая статистика - раздел математики, в которой изучаются методы сбора, систематизации и обработки результатов наблюдений массовых случайных явлений для выявления существующих закономерностей.

Математическая статистика тесно связана с теорией вероятностей. Обе эти математические дисциплины изучают массовые случайные явления. Связующим звеном между ними являются предельные теоремы теории вероятностей. При этом теория вероятностей выводит из математической модели свойства реального процесса, а математическая статистика устанавливает свойства математической модели, исходя из данных наблюдений (говорят «из статистических данных»).

Предметом математической статистики является изучение случайных величин (или случайных событий, процессов) по результатам наблюдений. Полученные в результате наблюдения (опыта, эксперимента) данные сначала надо каким-либо образом обработать: упорядочить, представить в удобном для обозрения и анализа виде. Это первая задача. Затем, это уже вторая задача, оценить, хотя бы приблизительно интересующие нас характеристики наблюдаемой случайной величины. Например, дать оценку неизвестной вероятности события, оценку неизвестной функции распределения, оценку математического ожидания, оценку дисперсии случайной величины, оценку параметров распределения, вид которого неизвестен, и т. д.

Следующей, назовем ее условно третьей, задачей является проверка статистических гипотез, т. е. решение вопроса согласования результатов оценивания с опытными данными. Например, выдвигается гипотеза, что: а) наблюдаемая с. в. подчиняется нормальному закону, б) м. о. наблюдаемой с. в. равно нулю: в) случайное событие обладает данной вероятностью и т. д.

Одной из важнейших задач математической статистики является разработка методов, позволяющих по результатам обследования выборки (т. е. части исследуемой совокупности объектов) делать обосно­ванные выводы о распределении признака (с. в. X) изучаемых объектов по всей совокупности.

Для обработки статистических данных созданы специальные про­граммные пакеты (STADIA, СтатЭксперт, Эвриста, SYSTAT. STAT-GRAPHICS и др.), которые выполняют трудоемкую работу по расче­ту различных статистик, построению таблиц и графиков.

Простейшие статистические функции имеются в программируемых калькуляторах и популярных офисных программах (EXCEL).

Результаты исследования статистических данных методами мате­матической статистики используются для принятия решения (в зада­чах планирования, управления, прогнозирования и организации произ­водства, при контроле качества продукции, при выборе оптимального времени настройки или замены действующей аппаратуры и т.д.), т.е. для научных и практических выводов.

Говорят, что «математическая статистика — это теория принятия решений в условиях неопределенности».

Математическая статистика возникла в XVIII веке в работах Я. Бернулли, П. Лапласа, К. Пирсона. В ее современном развитии опре­деляющую роль сыграли труды Г. Крамера, Р. Фишера. Ю. Неймана и др. Большой вклад в математическую статистику внесли русские уче­ные П. Л. Чебышев, А. М. Ляпунов, А. Н. Колмогоров, Б. В. Гнеденко и другие.

<== предыдущая лекция | следующая лекция ==>
Тема 1. Введение в макроэкономику | Генеральная и выборочная совокупности
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 465; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.