Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Назначение экспертных систем




Экспертные системы

Лекция № 5

Краткая сравнительная характеристика видов анализа

Таблица 2

Область сравнения Финансовый анализ Управленческий анализ
Пользователи информации Внутренние, сторонние, заинтересованные Руководители органи-зации и её подразделе-ний
Объекты анализа Организация как единое целое Организация как единое целое и её подразделения
Источники информации Формы бухгалтерской отчетности Комплекс экономической информации
Единицы измерения для расчета показателей Денежная форма Натуральная и денежная форма
Периодичность анализа В соответствии с датами составления отчетности (квартал, год) По мере необходимости и для внутренних регламентаций
Доступность результатов информации Доступна для всех Строго конфиденциальна (только для менеджеров организации)

 

 

Вопросы:

1. Назначение экспертных систем.

2. Структура ЭС.

3. Этапы разработки ЭС

 

 

Цель исследований по ЭС состоит в разработке программ, которые при решении задач,
трудных для эксперта-человека, получают результаты, не уступающие по качеству и
эффективности решениям, получаемым экспертом.

Исследователи в области ЭС для названия своей дисциплины часто используют также термин "инженерия знаний", введенный Е.Фейгенбаумом как «привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов».

ЭС предназначены для так называемых неформализованных задач, т.е. ЭС не отвергают и не заменяют традиционного подхода,ж разработке программ, ориентированного на решение формализованных задач.

Неформализованные задачи обычно обладают следующими особенностями:

¾ ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных;

¾ ошибочностью, неоднозначностью, неполнотой и противоречивостью знаний о проблемной области и решаемой задаче;

¾ большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик;

¾ динамически изменяющимися данными и знаниями.

 

Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма).

На протяжении 1960 - 1985 гг. успехи ИИ касались в основном исследовательских разработок, которые демонстрировали пригодность СИИ для практического использования. Начиная примерно с 1985 г. (в массовом масштабе с 1988 - 1990 гг.), в первую очередь ЭС, а в последние годы системы, воспринимающие естественный язык (ЕЯ-системы), и нейронные сети (НС) стали активно использоваться в коммерческих приложениях.

Причины, приведшие СИИ к коммерческому успеху, следующие.

1) Интегрированность. Разработаны инструментальные средства искусственного интеллекта (ИС ИИ), легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).

2) Открытость и переносимость. ИС ИИ разрабатываются с соблюдением стандартов, обеспечивающих открытость и переносимость [14].

3) Использование языков традиционного программирования и рабочих станций. Переход от ИС ИИ, реализованных на языках ИИ (Lisp, Prolog и т.п.), к ИС ИИ, реализованным на языках традиционного программирования (С, C++ и т.п.), упростил обеспечение интегриро-ванности, снизил требования приложений ИИ к быстродействию ЭВМ и объемам оперативной памяти. Использование рабочих станций (вместо ПК) резко увеличило круг приложений, которые могут быть выполнены на ЭВМ с использованием ИС ИИ.

4) Архитектура клиент-сервер. Разработаны ИС ИИ, поддерживающие распределенные вычисления по архитектуре клиент-сервер, что позволило:снизить стоимость оборудования, используемого в приложениях, децентрализовать приложения, повысить надежность и общую производительность (так как сокращается количество информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном ему оборудовании).

5) Проблемно/предметно-ориентированные ИС ИИ. Переход от разработок ИС ИИ общего назначения (хотя они не утратили свое значение как средство для создания ориентированных ИС) к проблемно/предметно-ориентированным ИС ИИ обеспечивает: сокращение сроков разработки приложений; увеличение эффективности использования ИС; упрощение и ускорение работы эксперта; повторную используемость информационного и программного обеспечения (объекты,классы,правила,процедуры).




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 313; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.