Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Логарифмический частотный критерий

 

Логарифмический критерий – это частотный критерий, позволяющий судить об устойчивости замкнутой САУ по виду логарифмической характеристики разомкнутой системы. Этот критерий основан на однозначной связи ЛФЧХ и АФЧХ систем автоматического управления. При этом рассматриваются САУ, базирующиеся на использовании устойчивых разомкнутых систем. Кроме того, рассматриваются системы с астатизмом не выше второго порядка.

Как следует из критерия устойчивости Найквиста в устойчивых САУ фазовый сдвиг может достигать значения только при модулях комплексной передаточной функции, меньшем чем единица. Это позволяет легко определить устойчивость по виду ЛАЧХ и ЛФЧХ.

Формулировка критерия: для устойчивости системы в замкнутом состоянии необходимо и достаточно, чтобы в диапазоне частот, где ЛАЧХ разомкнутой системы больше нуля число переходов фазовой характеристики прямой снизу верх превышало на число переходов сверху вниз, где а – число корней характеристического уравнения разомкнутой системы, лежащих в правой полуплоскости.

В частном случае для устойчивой разомкнутой системы (а=0) необходимым и достаточным условием замкнутой системы является необходимость выполнения следующего условия. В диапазоне частот, где , фазовая частотная характеристика не должна пересекать прямой , или пересекать ее одинаковое число раз снизу вверх и сверху вниз.

Рис. 6. ЛФЧХ устойчивой и неустойчивой САУ

 

Критическим значением коэффициента преобразования называется такое его значение, при котором АФЧХ проходит через точку (-1, j0) и система находится на границе устойчивости.

Запасом по модулю называется величина в децибеллах, на которую нужно изменить коэффициент преобразования САУ, чтобы привести ее к границе устойчивости.

,

где — частота, при которой фазовая характеристика равна .

Запасом устойчивости по фазе называется угол, на который нужно повернуть амплитудно-фазовую характеристику разомкнутой системы, чтобы замкнутая САУ оказалась на границе устойчивости.

,

где – значение ФЧХ на частоте среза системы, для которой выполняется условие .

 

<== предыдущая лекция | следующая лекция ==>
Частотный критерий Найквиста | Понятие об управляемости системы и ее наблюдаемости
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 2194; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.